
Last Latexed: February 14, 2014 at 11:53 1

Physics 613 Lecture 6 Feb. 11, 2014

Copyright c©2014 by Joel A. Shapiro

1 Quantum Field Theory

Today we will begin reformulating our discussion in terms of Quantum Field
Theory.

1.1 Prerequisites

I am going to assume that you are familiar with

1. Lagrangian and Hamiltonian formulation of classical mechanics for dis-
crete systems (finite number of degrees of freedom).

2. Lagrangian formulation of classical mechanics for continuous systems
(fields).

3. Noether’s theorem.

4. Quantum mechanics of the harmonic oscillator, Heisenberg and Schrödinger
pictures, and perturbation theory.

If you need remediation on (2), please review one of

• the last chapter of Goldstein, any edition

• My 507 lecture notes, chapter 8,
http://www.physics.rutgers.edu/∼shapiro/507/book9 2.pdf

• My 615 lecture notes,
http://www.physics.rutgers.edu/∼shapiro/615/lects/intro 2.pdf

1.2 Fields

We have seen that attempts to describe relativistic mechanics in quantum
mechanical terms fails because one gets negative energy states, which really
means excitations are possible which excite a negative energy state into a
positive energy one, which is the creation of a particle/antiparticle pair, so
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that we are not dealing with a fixed number of particles or a finite number
of degrees of freedom.

Relativity also requires all interactions are local, which implies we need
to consider dynamics as taking place at each point in space, not globally
where each particle affects every other one via a potential. So we are led to
assigning a field for each kind of particle we wish to discuss.

This is already familiar for electromagnetism, where we expect dynamics
to mean the dynamics of Aµ(~x, t). But for this to interact with electrons,
point by point in space, we must also consider the Dirac field of the electron
ψ(~x, t) to be not an amplitude for a single particle to be at the point ~x but
rather a dynamical degree of freedom (or several) at each point ~x in space.

To describe the dynamics of fields ηj(~x, t), we assume there is a given
function of ηj and the first time and spatial derivatives ηj,µ := ∂ηj/∂x

µ,
and maybe of xµ as well, which we call the Lagrangian density L. No-
tice the xµ are not degrees of freedom, only the values of the fields at
each point are. The Lagrangian L is the spatial integral of the density,
L(t) =

∫

d3xL(ηj(x
ν), ηj,µ(x

ν), xν), but more importantly the action is the
four-dimensional integral S =

∫

dtL(t) =
∫

d4xL(ηj(x
ν), ηj,µ(x

ν), xν). The
equations of motion are determined by insisting the variation of the action
vanishes (to first order) under any variation of the fields within the four-
dimensional space-time volume. This is given in terms of the variation of the
lagrangian density L in terms of each of its arguments, so that

• ∂L
∂ηj(~x, t)

means to vary the L function only by its dependence on ηj

and not on its derivatives, and only at the one point in space-time, and

• ∂L
∂ηj,µ

(~x, t) means vary the L function only by its dependence on that

derivative of ηj at only that one point, and holding ηj fixed.

Actually, as the action is an integral, the variations we need to consider will
be proportional to Dirac delta functions, so we really need to express L as a
differentiable function of η and η,µ, and take

δη(x1)

δη(x2)
= δ(x1 − x2),

δη,µ(x1)

δη(x2)
=

δη(x1)

δη,µ(x2)
= 0,

δη,µ(x1)

δη,ν(x2)
= δ(x1 − x2)δ

ν
µ.

Then it turns out the Euler-Lagrange equations of motion are

∂

∂xµ

∂L
∂ηj,µ

− ∂L
∂ηj

= 0. (1)
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For each field ηj we can define a vector of fields

πµ
j :=

∂L
∂ηj,µ

so the Euler-Lagrange equations are also ∂µπ
µ
j − ∂L

∂ηj
= 0. The time component

π0
j of πµ

j is the canonical momentum (field) conjugate to ηj, and is sometimes
called simply πj . We may also define the hamiltonian density

H =
∑

j

πjφj,0 − L,

where as usual we should replace φj,0 by its value given by π and φ.
As an example, consider a real scalar field φ(x) with the Lagrangian

density given by

L(φ, φ,µ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

We see immediately that πµ = ∂µφ = φ,µ and ∂L
∂φ

= −m2φ, so the equation
of motion is

∂µ∂
µφ−m2φ = 0,

the Klein Gordon equation. The hamiltonian density is H = πφ̇− 1
2
∂µφ∂

µφ+
1
2
m2φ2 = 1

2
π2 + 1

2
(~∇φ)2 + 1

2
m2φ2.

The solutions to the equations of motion for the Klein-Gordon field are,
of course, linear combinations of

φ(~x, t) = C(~k, k0)e−ikµxµ

with k0 = ±
√

~k 2 +m2,

so there are two solutions for each value of ~k, one with k0 = ω and one

with k0 = −ω, with ω = +
√

~k 2 +m2. So the general solution will be an

integral
∫

d3k of solutions with arbitrary coefficients C(~k, ω) = 1
(2π)3

1√
2ω
a(~k),

multiplying e−iωt+i~k·~x, together with negative energy modes which we will
write in terms of b(~k) := (2π)3

√
2ωC(−~k,−ω) for the coefficients multiplying

eiωt−i~k·~x. So

φ(xµ) =
∫

d3k

(2π)3
√

2ω

[

a(~k)e−ik·x + b(~k)eik·x
]

.

This is the correct form for the general scalar solution of the Klein-Gordon
equation, but without the restriction that we have a single real field. To
make φ(~x, t) real, we can insist on b(~k) = a∗(~k).
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We may treat a(~k) as the dynamical degrees of freedom that need to
be quantized, but first we need to say something about complex degrees of
freedom. In the Lagrangian mechanics we have used, the assumption was
made that the degrees of freedom are real variables. A complex variable
could be considered as two real variables, so if z = x+ iy is a complex degree
of freedom, we could treat L(z, z∗, ż, ż∗) as L̃(x, y, ẋ, ẏ). We might wonder
what it means to vary the Lagrangian with respect to z and z∗ independently.
By the chain rule,

∂L̃

∂x

∣

∣

∣

∣

∣

y

=
∂L

∂z

∣

∣

∣

∣

∣

z∗

+
∂L

∂z∗

∣

∣

∣

∣

∣

z

∂L̃

∂y

∣

∣

∣

∣

∣

x

= i
∂L

∂z

∣

∣

∣

∣

∣

z∗

− i
∂L

∂z∗

∣

∣

∣

∣

∣

z

and similarly for ż and ż∗. So if we näıvely assume we can define π and

π∗ by varying z and z∗ independently, π = ∂L
∂ż

∣

∣

∣

z,z∗,ż∗
= 1

2

(

∂L̃
∂ẋ

∣

∣

∣

ẏ
− i ∂L̃

∂ẏ

∣

∣

∣

ẋ

)

=

1
2
(πx − iπy), and ∂L

∂z
= 1

2

(

∂L̃
∂x

∣

∣

∣

y
− i ∂L̃

∂y

∣

∣

∣

x

)

, So the Euler Lagrange equation

from näıvely varying z and z∗ independently,

d

dt
π − ∂L

∂z
=

1

2

[(

d

dt
πx −

∂L

∂x

)

− i

(

d

dt
πy −

∂L

∂y

)]

,

which does indeed vanish from the two known equations from varying x
and y independently. Similarly for the variation with respect to z∗. The
Hamiltonian

H = πxẋ+ πyẏ − L = πż + π∗ż∗ − L̃.

Now let us consider the real scalar field and treat φ(~x) and its conjugate
momentum

π(x) = φ̇(x) =
∫ d3k

(2π)3
√

2ωk

(

−iωka(~k)e
−ik·x + iωka

†(~k)eik·x
)

as quantum mechanical fields which might not commute, which also means
the coefficients a(~k) and a†(~k) may not commute. As the conjugate momen-
tum to φ(~x) is π(~x) quite independently of the degrees of freedom at other
points ~x ′ 6= ~x, we expect φ(~x) and π(~x ′) to commute except when ~x = ~x ′,
and, as these are densities, we will need a Dirac delta function. Of course
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the φ(~x) commute with each other, as they are the dynamical coordinates,
and the π(~x) commute with each other, as they are the canonical momenta.
Thus we assume quantization means

[φ(~x), φ(~x ′)] = 0, [φ(~x), π(~x ′)] = iδ3(~x−~x ′), [π(~x), π(~x ′)] = 0 (2)

Notice these commutation relations are supposed to be taken at equal times,
t = t′.

Expanding the fields in terms of a and a†, and doing (or undoing) the
double Fourier transform, you will show for homework that

[a(~k), a(~k ′)] = 0, [a(~k), a†(~k ′)] = (2π)3δ3(~k−~k ′), [a†(~k), a†(~k ′)] = 0. (3)

The Hamiltonian at t = 0 is

H =
∫

d3x
1

2

(

π2(~x) + (~∇φ)2 +m2φ2
)

.

Using the expansion of π(~x) and φ(~x), and also

~∇φ(x) =
∫ d3k

(2π)3
√

2ωk

(

i~ka(~k)e−ik·x − i~ka†(~k)eik·x
)

,

we see that the Hamiltonian is

H =
1

2

∫

d3x
∫ d3k

(2π)3
√

2ωk

∫ d3k′

(2π)3
√

2ω′
k

[

a(~k)a(~k ′)e−i(~k+~k ′)·~x
(

−ωkω
′
k − ~k ·~k ′ +m2

)

+a(~k)a†(~k ′)e−i(~k−~k ′)·~x
(

ωkω
′
k + ~k ·~k ′ +m2

)

+a†(~k)a(~k ′)ei(~k−~k ′)·~x
(

ωkω
′
k + ~k ·~k ′ +m2

)

+a†(~k)a†(~k ′)ei(~k+~k ′)·~x
(

−ωkω
′
k − ~k ·~k ′ +m2

)

]

=
1

2
(2π)3

∫

d3k

(2π)3
√

2ωk

∫

d3k′

(2π)3
√

2ω′
k

[

a(~k)a(~k ′)δ3(~k +~k ′)
(

−ωkω
′
k − ~k ·~k ′ +m2

)

+a(~k)a†(~k ′)δ3(~k −~k ′)
(

ωkω
′
k + ~k ·~k ′ +m2

)

+a†(~k)a(~k ′)δ3(~k −~k ′)
(

ωkω
′
k + ~k ·~k ′ +m2

)
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+a†(~k)a†(~k ′)δ3(~k +~k ′)
(

−ωkω
′
k − ~k ·~k ′ +m2

)

]

=
1

2

∫

d3k

(2π)32ωk

[

a(~k)a(−~k)
(

−ω2
k + ~k 2 +m2

)

+a(~k)a†(~k)
(

ω2
k + ~k 2 +m2

)

+a†(~k)a(~k)
(

ω2
k + ~k 2 +m2

)

+a†(~k)a†(−~k)
(

−ω2
k + ~k 2 +m2

)

]

=
1

2

∫

d3k

(2π)3

[

a(~k)a†(~k) + a†(~k)a(~k)
]

ωk

=
∫

d3k

(2π)3
ωk

[

a†(~k)a(~k) +
1

2
δ3(0)

]

.

Notice that the Hamiltonian separates, each spatial momentum component
~k decoupling from the others and entering as a simple harmonic oscillator.
However it is a bit disconcerting to have the zero point energy, 1

2
ω~k

, for all of
the infinite number of normal modes. As long as we avoid general relativity,
and the coupling of this energy to gravitation, we can ignore this constant,
though infinite, contribution to the energy of every state in the system —
only energy differences have any effect. So we will drop this constant and
write

H =
∫ d3k

(2π)3
ω~k
a†(~k) a(~k).


