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1 More on Dirac Solutions

We have seen that the Dirac equation has solutions ψ = ωe−ip·x, two with

positive p0 = E =

√

~p 2 +m2 and two with negative p0 = −E, with

ω =






φ

~σ · ~p
E +m

φ




 for p0 > 0, and ω =





−~σ · ~p
E +m

χ

χ



 for p0 < 0.

The φ and χ are two component objects, so there are two independent so-

lutions for each p0. If φ ∝
(

1
0

)

we have spin in the positive z direction,

which we might call φ↑, and φ ∝
(

0
1

)

is φ↓. But it is often more useful, for

particles not at rest, to quantize spin in the direction of ~p, diagonalizing the
helicity operator

h(~p) =








~σ · ~p
|~p| 0

0
~σ · ~p
|~p|








which has eigenvectors for φ = φ± if
~σ · ~p
|~p| φ± = ±φ±. These are helicity +

and − respectively.
The normalization we usually use in non-relativistic quantum mechanics,

with
∫

d3xψ†ψ = 1, is not convenient relativistically, as the integral over
space at a fixed time is not a relativistic invariant. Instead, it will be useful
to normalize our wave functions to ω†ω = 2E, and define

u(~p, s) = ω(E, p, s) =
√
E +m






φs

~σ · ~p
E +m

φs




 ,

v(~p, s) := ω(−E,−~p, s) =
√
E +m






~σ · ~p
E +m

χs

χs




 ,
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for s = 1, 2, where φ1 = χ2 =
(

1
0

)

and φ2 = χ1 =
(

0
1

)

. The reason for

reversing the indices on χ and of defining v in terms of −E −~p is related to
Dirac’s understanding of the negative energy solutions.

What does it mean that there are negative energy solutions to the free
Dirac equation? If there were never any interactions, perhaps we could just
ignore them, and claim that physical states are the positive energy solutions.
But if interactions are added, there will be transitions between free particle
eigenstates, and particles can fall into or pop out of the negative energy
states. In order to have positive energy solutions be stable in the presence
of interactions, Dirac proposed that the sea of negative energy states is full
in the vacuum state. Still, interactions might kick a negative energy solution
into a positive energy one, leaving a hole in the vacuum which would have a
positive charge (as we had removed one negative charge from the vacuum),
giving a state with one extra electron and one positron. This is quite a nice
prediction, but it does mean that we are no longer dealing with a Hilbert
space with a fixed number of particles.

The idea that new stuff can be created in addition to the particles we
originally had is not new. Consider what happens if two charged particles in
empty space come close to each other and scatter. If we ignored radiation
and considered only the Schrödinger equation with the Coulomb potential,
we could treat this as ordinary quantum mechanics of a two particle system.
But we know that accelerating particles produce electromagnetic radiation,
so in fact the final state will consist not only of the two deflected particles
but also an electromagnetic field. That field can be considered quantum
mechanically, either as a quantum theory of the electromagnetic field, or as
having an undetermined number of photons. In fact, the two things are the
same, according to quantum field theory.

As this idea first presents itself for the electromagnetic field, let us first
review what we know about it classically. Maxwell and Lorentz1 gave us the
correct relativistic theory well before relativity was proposed. Maxwell tells
us2

~∇ · ~B = 0, No magnetic charge

1Actually, the magnetic part of the Lorentz force was correctly described by Heaviside
in 1889 and possibly by Maxwell in 1865, well before Lorentz combined it with the Coulomb
electric part in 1892.

2In rationalized MKS Heaviside-Lorentz units, using c = 1.
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~∇ · ~E = ρ, Gauss’ law

~∇× ~E +
∂ ~B

∂t
= 0, Faraday’s law

~∇× ~B − ∂ ~E

∂t
= ~j Ampère/Maxwell.

where ρ is the charge density and ~J the current density. The first two of
these equations do not look like equations of motion, as they have no time
derivatives, but are constraint equations. The first tells us3 that there is a
vector field ~A(~x) such that ~B = ~∇ × ~A. Then writing Faraday in terms of

~A, ~∇ ×


 ~E +
∂ ~A

∂t



 = 0, which again says there is a scalar field −V whose

gradiant is the piece in parentheses, or

~E = −~∇V − ∂ ~A

∂t
.

This reduces the 6 fields ~E and ~B to the four fields Aµ =
(

V, ~A
)

. With

~E and ~B defined in terms of Aµ, the two sourceless laws of Maxwell are
automatically satisfied. Let us define the field-strength tensor

F µν = ∂µAν − ∂νAµ.

This is antisymmetric in µ↔ ν, so the diagonal elements are zero. If one of
the indices is 0, we have

F 0j =
∂Aj

∂t
+ ∂jV = −Ej = −F j0,

and if both are spacelike,

F jk = −∂jA
k + ∂kA

j = −ǫjkℓB
ℓ.

Then

∂µF
µj = −∂Ej

∂t
+ (~∇× ~B)j = ~j

∂µF
µ0 = ~∇ · ~E = ρ.

3As Minkowski space is contractable, and so is space for a given time, the Poincaré
Lemma tells us that the a divergence-free vector field on space (a closed two-form) is

exact, that is, the curl of a vector field ~A(~x) (a one-form).



613: Lecture 4 Last Latexed: March 2, 2014 at 22:07 4

Naturally we define the 4-current Jµ =
(

ρ,~j
)

and find

∂µF
µν = Jν .

This has a wonderful consequence:

∂νJ
ν = ∂ν ∂µ

︸ ︷︷ ︸

symmetric

F µν

︸︷︷︸

antisymmetric

= 0,

showing that the electric current is automatically conserved and hence so is
charge.

As we will see later, understanding quantum field theory begins with the
Lagrangian form of the mechanics, so we may ask what Lagrangian generates
Maxwell’s equation. In general, if the lagrangian density L depends on fields
ηj, with ηj,µ := ∂µηj the equations of motion are

d

dxµ

∂L
∂ηj,µ

− ∂L
∂ηj

= 0.

For electromagnetism, the dynamical fields are Aµ, and the lagrangian den-
sity is

L = −1

4
F µνFµν −AνJ

ν .

The first term depends only on Aµ,ν and not on Aµ itself, so using

∂Fµν

∂Aρ,σ

=
∂Fµν

∂(∂σAρ)
= δσ

µδ
ρ
ν − δσ

ν δ
ρ
µ we see

∂L
∂Aρ,σ

= F ρσ so ∂σF
σρ = Jρ,

in agreement with what we want.
The replacement by the physically directly observable fields ~E and ~B by

the four dimensional vector potential Aµ simplifies the dynamics some, but
it introduces another strangeness. If we consider what happens if we add to
Aµ(xρ) the 4-gradient of a scalar function4 Λ(xρ),

Aµ(xρ) −→ Aµ(xρ) + ∂µΛ(xρ), (1)

the electric and magnetic fields

Fµν = ∂µAν −∂νAµ −→ ∂µAν +∂µ∂νΛ−∂νAµ −∂ν∂µΛ = ∂µAν −∂νAµ = Fµν

4Note this Λ has nothing to do with our Lorentz transformations, also called Λ.
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so they are unchanged. Even if we look at the action, which is the four
dimensional integral of the lagrangian density L, the change takes

−AνJ
ν −→ −AνJ

ν − (∂νΛ)Jν

so the change in the action is

δS = −
∫

d4x (∂νΛ)Jν =
∫

d4xΛ (∂νJ
ν) −

∫

∞
(ΛJµ) dΣµ,

where we have integrated by parts, and the
∫

∞ is an integral at the bound-
ary of the space-time volume we have considered, presumably all infinitely
distant5 and where we can assume our fields have extenuated away. Then
if our source Jν satisfies the conservation requirement ∂νJ

ν , we see that the
change in Aν has no physical effect.

The transformation (1) is a local gauge transformation. Notice that its
variation is independent at each point in spacetime, unlike a global transfor-
mation like a rotation, Lorentz transformation or isospin transformation.

1.0.1 Interaction with matter

In classical nonrelativistic mechanics, a particle of charge q has a Hamiltonian

H =
(~p− q ~A(~x))2

2m
+ qV (~x).

The hamilton equations of motion are then

dxj

dt
=

∂H

∂pj

=
1

m
(pj − qAj)

dpj

dt
= −∂H

∂xj

= −q∂jV +
q

m

∑

k

(pk − qAk)∂jAk = −q∂jV + q
∑

k

dxk

dt
∂jAk

where I have used the first equation, ~p = m~̇x+ q ~A in the second, which then
gives

m
d2

dt2
xj + q

dAj(~x)

dt
= −q∂jV + q

∑

k

dxk

dt
∂jAk,

5Another reason to ignore this hypersurface integral is that in deriving equations of
motion classically, or doing a functional integral quantum-mechanically, we are told to
keep the dynamical quantities at the surface constant and only vary physics in the interior
of the region.
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The second term is a total derivative, so is q ∂ ~A
∂t

+ q(~̇x · ~∇) ~A. Bringing that
to the right, we have

m
d2

dt2
xj = −q∂jV + q

∑

k

dxk

dt
∂jAk − q

∂Aj

∂t
− q

∑

k

dxk

dt
∂kAj

With ~E = −~∇V − d ~A
dt

and ǫjkℓBℓ = ǫjkℓǫℓmn∂mAn = ∂jAk −∂kAj, we see that

m
d2

dt2
xj = q

(

Ej + ǫjkℓ

dxk

dt
Bℓ

)

,

or
~F = q

(

~E + ~v × ~B
)

.

Noting that V = A0 we see that we have really used just the free particle
non-relativistic equation p0 = ~p 2/2m and substituted pµ −→ pµ−qAµ, which
is known as em minimal substitution or minimal coupling. As a quantum
mechanical statement with pµ → ih̄∂µ, when we apply this to the Dirac
equation we have

(iγµ∂µ − qγµAµ −m)ψ = 0. (2)

One very interesting consequence comes from examining the effect of a
uniform magnetic field ~B = Bêz expressed in terms of the vector potential
~A = 1

2
B(−y, x, 0) or Aj = −B

2
ǫjk3rk. In ordinary quantum mechanics,

H =
p2

2m
→ (~p− q ~A)2

2m
+ qA0

Eψ =

(

− h̄2

2m
∇2 +

ih̄q

2m

(

~∇ · ~A + 2 ~A · ~∇
)

+
q2

m2

~A 2 + qA0

)

ψ.

Noting that ~∇ · ~A = 0 and 2h̄ ~A · ~∇ = −h̄Bǫjk3rk∂j = i ~B · ~̂L, we see that

the magnetic term is − q
2m
~B · ~L. Comparing to the usual expression for the

energy due to a magnetic moment, E = −~µ · ~B, we see that orbital angular
momentum contributes a magnetic moment

~µ =
q

2m
~L.

The quantity h̄q
2m

for an electron is called the Bohr magneton (= 9.27×10−24

J/T).
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This discussion did not consider intrinsic spin, but if we thought the
same relation should hold for it, with ~L → h̄~S = h̄

2
~σ ∼ ± h̄

2
. This turns

out to be approximately half what we find measuring the energy difference
in the ground state of hydrogen. The gyromagnetic ratio fudge factor g was
introduced, ~µ = g h̄q

2m
~S, and experiment found g to be very close to 2.

Let us look at the Dirac equation with minimal substitution. Premultiply
the Dirac equation (2) by (iγµ∂µ − qγµAµ +m) to get

[

(iγµ∂µ − qγµAµ)2 −m2
]

ψ = 0.

Again using Aµ = 1

2
B(0,−y, x, 0), we have

(

−∂µ∂
µ − iqγµγν (∂µAν) − iq {γµ, γν}Aν∂µ + q2AµA

µ −m2
)

ψ = 0.

As ∂kAj = 1

2
Bǫjk3 and the zero’th components vanish, and as γkγjǫjk3 =

2i
(
σ3 0
0 σ3

)

, the second term is iq~σ · ~B. The third term is −2iqAµ∂µ =

2qAµpµ = −2q ~A · ~p. This is necessary to change ~p 2 into m2(~̇x)2, and is not

part of the interaction with ~B. The fourth term is negligible6, so we have
(p2 + iq~σ · ~B)ψ = 0. Then

Eψ =
√

~p 2 +m2 − iq~σ · ~B ψ ∼
(√

~p 2 +m2 − iq

2m
~σ · ~B

)

ψ.

Thus the extra energy from the magnetic field is E = − iq
2m
~σ · ~B, twice the

result from non-relativistic considerations. The result g = 2 which comes
unexpectedly from the Dirac equation was a great triumph, establishing its
correctness. As we shall see, the corrections to this from quantum field theory
(g = 2.002319304364) is the greatest triumph of QED.

6If B ∼ 1 T and we are interested in a region of size ∼ 1 Å, for an electron qAµ/me ∼
10−7


