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— — File intexample begins here — —
This discussion has been somewhat abstract, so it might be well to give some
examples. We will consider

• the pendulum

• the two-dimensional isotropic harmonic oscillator

• the three dimensional isotropic anharmonic oscillator

The Pendulum

The simple pendulum is a mass connected by a fixed length massless rod to
a frictionless joint, which we take to be at the origin, hanging in a uniform
gravitational field. The generalized coordinates may be taken to be the angle
θ which the rod makes with the downward vertical, and the azimuthal angle
φ. If ` is the length of the rod, U = −mg` cos θ, and as shown in section ??
(??) or section ??, the kinetic energy is T = 1

2
m`2

(
θ̇2 + sin2 θφ̇2

)
. So the

lagrangian,

L =
1

2
m`2

(
θ̇2 + sin2 θφ̇2

)
+ mg` cos θ

is time independent and has an ignorable coordinate φ, so pφ = m`2 sin2 θφ̇
is conserved, and so is H. As pθ = m`2θ̇, the Hamiltonian is

H =
1

2m`2

(
p2

θ +
p2

φ

sin2 θ

)
−mg` cos θ.

In the four-dimensional phase space one coordinate, pφ, is fixed, and the equa-
tion H(θ, φ, pθ) = E gives a two-dimensional surface in the three-dimensional
space which remains. Let us draw this in cylindrical coordiates with radial
coordinate θ and z coordinate pθ.
Thus the motion will be restricted
to the invariant torus

♣♠ ⇒ is this where that is defined???
shown below. The generators F2 =
pφ and F1 = H generate motions
along the torus as shown, with pφ

generating changes in φ, leaving θ
and pθ fixed. Thus a point moves
as on the blue path shown, looking
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like a line of latitude. The change in φ generated by g(0,t2) is just t2, so we
may take φ = phi2 of the last section. H generates the dynamical motion of
the system,

θ̇ =
∂H

∂pθ

=
pθ

m`2
, φ̇ =

∂H

∂pφ

=
pθ

m`2 sin2 θ
,

ṗθ = −∂H

∂θ
=

p2
φ cos θ

m`2 sin3 θ
−mg` sin θ.

This is shown by the red path, which goes around the bottom, through the
hole in the donut, up the top, and back, but not quite to the same point
as it started. Ignoring φ, this is periodic motion in θ with a period Tθ, so
g(Tθ,0)(η0) is a point at the same latitude as η0. This t ∈ [0, Tθ] part of the
trajectory is shown as the thick red curve. There is some t̄2 which, together

with t̄1 = Tθ, will cause g
~̄t to map each point on the torus back to itself.

Thus ~e1 = (Tθ, t̄2) and ~e2 = (0, 2π) constitute the unit vectors of the
lattice of ~t values which leave the points unchanged. The trajectory generated
by H does not close after one or a few Tθ. It could be continued indefinitely,
and as in general there is no relation among the frequencies (t̄2/2π is not
rational, in general), the trajectory will not close, but will fill the surface of
the torus. If we wait long enough, the system will sample every region of the
torus.

The 2-D isotropic harmonic oscillator

A different result occurs for the two dimensional zero-length isotropic oscil-
lator,

L =
1

2
m(ẋ2 + ẏ2)− 1

2
k(x2 + y2) =

1

2
m(ṙ2 + r2φ̇2)− 1

2
kr2.

While this separates in cartesian coordinates, from which we easily see that
the orbit closes because the two periods are the same, we will look instead
at polar coordinates, where we have a conserved Hamiltonian

F1 = H =
p2

r

2m
+

p2
φ

2mr2
+

1

2
kr2,

and conserved momentum pφ conjugate to the ignorable coordinate φ.
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As before, pφ simply changes φ, as
shown in red. But now if we trace
the action of H,

dr

dt
= pr(t)/m,

dφ

dt
=

pφ

mr2
,

dpr

dt
=

p2
φ

mr3(t)
− kr(t),

we get the blue curve which closes
on itself after one revolution in φ
and two trips through the donut
hole. Thus the orbit is a closed
curve, there is a relation among the
frequencies.
Of course the system now only samples the points on the closed curve, so a
time average of any function on the trajectory is not the same as the average
over the invariant torus.

The 3-D isotropic anharmonic oscillator

Now consider the spherically symmetric oscillator for which the potential
energy is not purely harmonic, say U(r) = 1

2
kr2 +cr4. Then the Hamiltonian

in spherical coordinates is

H =
p2

r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+

1

2
kr2 + cr4.

This is time independent, so F1 = H is conserved, the first of our integrals
of the motion. Also φ is an ignorable coordinate, so F2 = pφ = Lz is the

second. But we know that all of ~L is conserved. While Lx is an integral of
the motion, it is not in involution with L1, as [L1, L2] = L3 6= 0, so it will
not serve as an additional generator. But L2 =

∑
k L2

k is also conserved and
has zero Poisson bracket with H and Lz, so we can take it to be the third
generator

F3 = L2 = (~r × ~p)2 = r2~p 2 − (~r · ~p)2 = r2

(
p2

r +
p2

θ

r2
+

p2
φ

r2 sin2 θ

)
− r2p2

r

= p2
θ +

p2
φ

sin2 θ
.
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The full phase space is six dimensional, and as pφ is constant we are left,
in general, with a five dimensional space with two nonlinear constraints.
On the three-dimensional hypersurface, pφ generates motion only in φ, the
Hamiltonian generates the dynamical trajectory with changes in r, pr, θ, pθ

and φ, and F3 generates motion in θ, pθ and φ, but not in r or pr.
Now while Lx is not in involution with the three Fi already chosen, it is

a constant of the (dynamical) motion, as [Lx, H] = 0. But under the flow
generated by F2 = Lz, which generates changes in ηj proportional to [ηj, Lz],
we have

d

dλ
Lx(g

λLz~η) =
∑
j

∂Lx(η)

∂ηj

[ηj, Lz] =
∑
jk

∂Lx(η)

∂ηj

Jjk
∂Lz

ηk

= [Lx, Lz] 6= 0.

Thus the constraint on the dynamical motion that Lx is conserved tells us
that motion on the invariant torus generated by Lz is inconsistent with the
dynamical evolution — that the trajectory lies in a discrete subspace (two di-
mensional) rather than being dense in the three-dimensional invariant torus.
This also shows that there must be one relation among the frequencies.

Of course we could have reached this conclusion much more easily, as we
did in section ??, by choosing the z-axis of the spherical coordinates along
whatever direction ~L points, so the motion restricts ~r to the xy plane, and
throwing in pr gives us a two-dimensional torus on which the motion remains.
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