Physics 507 Homework Solutions #7
Due: Thursday, Oct. 21, 2010

7.1 Three springs connect two masses to each other and to immobile walls,
as shown. Find the normal modes and frequencies of oscillation, assuming
the system remains along the line shown.
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Solution 7.1:  With x; measured from the left wall, and with n; = z; —a,
1o = T3 — 3a the displacements from equilibrium, the kinetic and potential
energies are

T = Sl i) = gl )

Vo= %k[(xl—a)2+2($2—$1—2a)2+($2—3a)2]
= SH)+ () + 20— m)’
= SKBm)? + B(m)” — dmn].

The kinetic energy is already in the form where the mass matrix is a constant
multiple of the identity, so all that is necessary is to diagonalize the potential
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where O is a rotation by 7/4,

o= h(i 1) el Y

Thus the eigenfrequencies are w; = \/% and wy = /bk/m, with corre-
sponding normal modes (; = Re (A4;e™i*). For the displacements 7, the
first of these corresponds to n = O7'¢; = (1,1) x Re (Ajei\/k'/_mt), with
both masses moving in the same direction. This corresponds to a body of
mass 2m and a spring constant 2k from the two springs in parallel. The

second mode is (1, —1) x Re (A;e’V*/™) with each mass effectively cou-
pled to a fixed point with one spring with constant & and another (half of
the middle spring) with constant 4k.

7.2 Consider the motion, in a fixed vertical plane, of a double pendulum
consisting of two masses attached to each other and to a fixed point by in-
extensible strings of length L. The upper mass has mass m; and the lower
mass my. This is all in a laboratory with the ordinary gravitational forces
near the surface of the Earth.

a) Set up the Lagrangian for the motion, assuming
the strings stay taut. L
b) Simplify the system under the approximation that
the motion involves only small deviations from equi-

librium. Put the problem in matrix form appropriate m,
for the procedure discussed in class.
c¢) Find the frequencies of the normal modes of os- L
cillation. [Hint: following exactly the steps given in
class will be complex, but the analogous procedure
reversing the order of U and T will work easily.| M2
Solution 7.2:  The first mass has coordinates

1 = {sinb,

Yy = —{ cos 91

ry = [L(sinb +sinby)

y2 = —L(cosb; + cosby)
so v? = (262 and

) o . ) m
vy = ([(6y cos by + O cosby) 1

+(91 sin 01 + 92 sin 02)2}
= 62[9% + 95 + 29.19-2 COS<91 — 92)]

The potential energy is

U = migyr + magys
= —gl(my cos by + mo(cosb + cosby)) .




For shorthand, let p = m;/msy. Then the Lagrangian is L =T — U, where

1 . . ..
T = jml’ (14 )67 + 63 + 20,0, cos (6, — 62)],

U = —mal*[(1+ p)cost + cosby]

b) Equilbrium is at ¢; = 6 = 0, so to second order in the #’s and é’s,

T

1 . ) .

5mal’ [(1+ )0} + 63 + 26,65] ,
1

= gmal? [(1+p)07 + 03],

where an irrelevant constant term in the potential energy has been dropped.
In matrix form this gives

1 . . 1
T= EmQKQHT - M -0, U= §m2g€9T -A-0,

(147 1 (147 0
() A= ( Y
¢) As U is already in diagonal form, it is easier if we reverse the steps of

the procedure in the book. With y; = /1 +1r6; and y, = 65, we have
U= %mggﬁyT ~y,and T = %yT -m -y with

" ((1 + 71~)*1/2 o I)_l/Q) |

This has equal diagonal elements, so we know the diagonalizing rotation is
through 45°; or

with

Uy

(1 4+ y2)/V2 = (V1 + 76, + 05)/V2
uy = (y1—y2)/V2=(1+716; —0)/V?2, s0
0 = (u— Uz)/\/i,
O = (w1 +u2)/\/2(1+7)

Then U = imaogl(uf + u3) and

We now have independent oscillators, with angular frequencies given by the
square root of the ration of the coefficient in the potential to that in the
kinetic energy. Thus the two frequencies are

1 g 1 ~1/2
= —/2 1+ —— .
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7.3 (a) Show that if three mutually gravitating point masses are at the

vertices of an equilateral triangle which is rotating about an axis normal
to the plane of the triangle and through the center of mass, at a suitable
angular velocity w, this motion satisfies the equations of motion. Thus this
configuration is an equilibrium in the rotating coordinate system. Do not
assume the masses are equal.
(b) Suppose that two stars of masses M; and M, are rotating in circular
orbits about their common center of mass. Consider a small mass m which is
approximately in the equilibrium position described above (which is known
as the Lz point). The mass is small enough that you can ignore its effect on
the two stars. Analyze the motion, considering specifically the stability of
the equilibrium point as a function of the ratio of the masses of the stars.

Solution 7.3:  If the three particles, which have masses M; and positions
R;, i =1,2,3, are in an equilateral triangle of side L, then |R; — R;| = L
for i # j. Then the force on particle i is

= M;(R; — R) M;(R; — R)
F = GMiZ TR :GMiZ IE
J#i J v Ve
MR, —R,) GM;Mp, ~ =
— GM@Z ]( £3 >: L3 T(R_RZ),

where My = Y M; is the total mass and E is the position of the center
of mass. If the particles are rotating about R with angular Ve1001ty w, the
Centrlpetal force required to maintain this motion is M;w (R R ), so if

= GMypL=3, this is exactly what the gravitational forces do, and the
rotation satisfies the equations of motion.



(b) If the third mass M3 = m is
much smaller than the other two,
so that its effect on the motion of
the others is negligible, M; and
My will circle their common center
of mass at distances MyL/(M; +
M,) and M,L/(M; + M) respec-
tively. We choose rotating carte-
sian coordinates with the origin
and z-axis at the center of mass
and along & respectively. From
the general equation for the ac-
celeration in a rotating reference
frame, we have

ML ML

Mg+ M M+ M

2 2
mr=F —2ma& x 0 —m@ x (& x 7),

If 7 differs from the equilibrium position Rs by a vector 7j, the force on m
is
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where we have expanded to first order in 7j, using
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The second and third terms of (1), which are independent of 7, add as at

the equilibrium point to —GmMrR3/L? = —mw?R3, where we have made

use of R = 0. Let 77 = (x,y, 2). Then
2 (B — Bs) /L =(~1,-V3,0),

217 - (ﬁz - ﬁs) /L=~ \/gy,
2(Ry = Rs) /L =(1,-v/3,0),

so the last two terms in (1) are

3GmMT(x+x/§§y) 3 2(x+\/§§y)7

4 I3 V3&x + 3y 4 V3 + 3y
where f = (Ml — MQ)/(Ml + Mg)
Thus
) T+/3¢y
5 2= 2§ 2 N I NV T
7 = —wh—w'Rs+ it V3Ex+3y | — 20xT — &x <CUX(77+R3)>
0
0 Y z + /3¢y
= 0| +2w| —d |+ | V3x+3y
4
z 0 0
The z motion decouples simply: 3 = —w?z, which is stable oscillatory mo-

tion. The x and y coordinates have coupled second order linear differential

equations. A trial solution x = ae®*t, y = be'*“! will satisfy the equations
if
—aa® = 2iba+ Z(a +V/3¢b),
3
—ba® = —2iao+ Z(ﬁga +3b).

A nonzero solution for (a,b) requires a vanishing determinant:

a? +3/4 2ia + 3v/3¢ /4
—2ia +3V36/4 o®+9/4 )

= (e wa) ot 00— (G s 4o

= a4—a2+%(1—§2)

0 = det(

The requirement for a stable solution is that all solutions have Im « > 0,
but this can only be true if 2a? = 1+ \/1 — 27(1 — £?)/4 is real and positive.
As £ € [—1,1] by its definition, this requires only that the argument of
the square root is nonnegative, or £? > 23/27. Calling M, the greater of
the two masses, we have £ > 0, so .923 < ¢ = 1 — 2My/(M; + Ms), or
(M + My) /My > (.0385)~! = 25.96, or

M,
— > 24.
M, o 96

is required for a stable equilibrium. In that case, we have shown that the
linear equations have stable solutions. We are still not sure of absolute



stability, as higher order considerations might cause a slow deviation from
this oscillatory solution, and this problem was not solved until 1962*.

The mass of the Earth is 81 times the mass of the moon, so there are
two points, called Ly and L5, after Lagrange, who discovered them, which
would be stable places to store things. This has been proposed for space
colonies. The Sun is about 1000 times more massive than Jupiter, so if the
effects of the other planets can be ignored, there should be stable points for
the Jupiter—Sun system, and indeed there are accumulations of asteroids,
called the Trojan asteroids, at both these points.

1J. K. Moser, Lectures on Hamilitonian Systems, Memoirs of the Amer. Math. Soc.,
81, 1968



