
Physics 507 Homework Solution #3
Due: Thursday, Sept. 23, 2010

3.1 Consider a pendulum consisting of a mass at the end of a massless
rod of length L, the other end of which is fixed but free to rotate. Ignore
one of the horizontal directions, and describe the dynamics in terms of the
angle θ between the rod and the downwards direction, without making a
small angle approximation.
(a) Find the generalized force Qθ and find the conserved quantity on phase
space.
(b) Give a sketch of the velocity function, including all the regions of phase
space. Show all fixed points, separatrices, and describe all the invariant sets
of states. [Note: the variable θ is defined only modulo 2π, so the phase space
is the Cartesian product of an interval of length 2π in θ with the real line
for pθ. This can be plotted on a strip, with the understanding that the left
and right edges are identified. To avoid having important points on the
boundary, it would be well to plot this with θ ∈ [−π/2, 3π/2].

Solution 3.1: (a) The Lagrangian is L = 1
2
mL2(θ̇)2 − U , with U =

−mgL cos θ, so Q(θ) = −∂U/∂θ = −mgL sin θ. The conserved quantity is
E = T +U = 1

2
mL2(θ̇)2−mgL cos θ. As p = ∂L/∂θ̇ = mL2θ̇, the conserved

energy is E(θ, p) = p2/2mL2 −mgL cos θ.

(b) In the figure, the an-
gle is graphed for θ ∈
[−π/2, 3π/2]. S1 and S2

are separatrices. There
is one stable and one un-
stable fixed point, while
the rest of phase space
consists of invariant sets
with oscillatory motion
and invariant sets with
rotational motion.
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3.2 Consider again the pendulum of mass m on a massless rod of length
L, with motion restricted to a fixed vertical plane, with θ, the angle made
with the downward direction, the generalized coordinate. Using the fact

that the energy E is a constant,
(a) Find dθ/dt as a function of θ.
(b) Assuming the energy is such that the mass comes to rest at θ = ±θ0,
find an integral expression for the period of the pendulum.
(c) Show that the answer is 4

√
L
g
K(sin2(θ0/2), where

K(m) :=
∫ π/2

0

dφ√
1−m sin2 φ

is the complete elliptic integral of the first kind.
(Note: the circumference of an ellipse is 4aK(e2), where a is the semi-major
axis and e the eccentricity.)
(d) Show that K(m) is given by the power series expansion

K(m) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

mn,

and give an estimate for the ratio of the period for θ0 = 60◦ to that for
small angles.

Solution 3.2: (a) The energy is E = 1
2
mL2θ̇2 − mgL cos θ, where we

have chosen U = 0 at the pivot height. Then

θ̇ =

√
2E

mL2
+

2g

L
cos θ =

√
2g

L

√
cos θ − cos θ0,

where gmL cos θ0 = −E.
(b) Thus the period is

T = 2
∫ θ0

−θ0

√
L

2g

1√
cos θ − cos θ0

dθ.

(c) As cos θ = 1− 2 sin2(θ/2), if we let sin(θ/2) = sin(θ0/2) sinφ,

T = 4

√
L

2g

∫ θ0

0
dθ

1√
2
(
sin2( θ0

2
)− sin2( θ

2
)
)

= 2

√
L

g

∫ π/2

0

2 sin(θ0/2) cos φdφ

cos(θ/2)

1

sin(θ0/2)

1√
1− sin2 φ

= 4

√
L

g

∫ π/2

0

dφ√
1− sin2(θ0/2) sin2 φ

= 4

√
L

g
K(sin2(θ0/2)).



(d) Expanding (1 − m sin2 φ)−1/2 by the binomial theorem, and noting(−1/2
n

)
= (−1)n(2n− 1)!!/(2n)!!, we have

K(m) =
∞∑

n=0

(2n− 1)!!

(2n)!!
mn

∫ π/2

0
sin2n φ dφ,

and the integral is

∫ π/2

0
sin2n φ dφ =

∫ π/2

0

(
eiφ − e−iφ

2i

)2n

dφ =
π

2

(
2n
n

)
2−2n =

π

2

(2n− 1)!!

(2n)!!
,

so

K(m) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

mn.

For θ0 = 60◦, m = sin2(θ0/2) = 1/4,

K(m)

K(0)
= 1 +

(
1

2

)2 1

4
+
(

3

8

)2 (1

4

)2

+
(

15

48

)2 (1

4

)3

+ . . . ≈ 1.0728

3.3 A particle of mass m1 lies on a frictionless horizontal table with a tiny
hole in it. An inextensible massless string attached to m1 goes through the
hole and is connected to another particle of mass m2, which moves vertically
only. Give a full set of generalized unconstrained coordinates and write the
Lagrangian in terms of these. Assume the string remains taut at all times
and that the motions in question never have either particle reaching the
hole, and there is no friction of the string sliding at the hole.
Are there ignorable coordinates? Reduce the problem to a single second
order differential equation. Show this is equivalent to single particle motion
in one dimension with a potential V (r), and find V (r).

Solution 3.3: The length of the string, r + h = ` is a constraint, so if we
use polar coordinates r and θ for the mass
on the table, the remaining coordinate, the
height h of the hanging mass, is deter-
mined. Thus

T =
1

2
m1(ṙ

2 + r2θ̇2) +
1

2
m2

˙̀2

=
1

2
(m1 + m2)ṙ

2 +
1

2
m1r

2θ̇2,

U = K1 −m2g` = K + m2gr,

m

h

r
θ

m2

1

where K1 and K are constants (with K = K1 − mg`). Thus Lagrange’s
equations are

(m1 + m2)r̈ −m1rθ̇
2 + m2g = 0,

d

dt
m1r

2θ̇ = 0.

The second equation tells us that

L := m1r
2θ̇,

which is the angular momentum about the vertical through the hole, is
conserved. Then we can rewrite

θ̇ =
L

m1r2

and the first equation becomes

(m1 + m2)r̈ − L2

m1

r−3 + m2g = 0.

Here we have an effective force F = L2/m1r
3 −mg and an effective mass

M = m1 + m2, and the problem can be described in terms of an effective
potential V (r) = (L2/2m1r

2)+m2gr, and the total energy E(r, ṙ) = 1
2
Mṙ2+

V (r) is a conserved, first integral of the motion.

3.4 Consider some intelligent bugs who live on a turntable which, ac-
cording to inertial observers, is spinning at angular velocity ω about its
center. At any one time, the inertial observer can describe the points on
the turntable with polar coordinates r, φ. If the bugs measure distances
between two objects at rest with respect to them, at infinitesimally close
points, they will find



d`2 = dr2 +
r2

1− ω2r2/c2
dφ2,

because their metersticks shrink in the
tangential direction and it takes more
of them to cover the distance we think
of as rdφ, though their metersticks
agree with ours when measuring radial
displacements.

The bugs will declare a curve to
be a geodesic, or the shortest path be-
tween two points, if

∫
d` is a minimum.

Show that this requires that r(φ) sat-
isfies

dr

dφ
= ± r

1− ω2r2/c2

√
α2r2 − 1,

where α is a constant.

Straight lines to us and to the bugs,
between the same two points.

Solution 3.4: If we consider the path as r(φ), the length is given by

` =
∫ √

ṙ2 +
r2

1− Ω2r2
dφ,

where ṙ = dr/dφ, and Ω := ω/c. Think of φ as time and this the action for
a lagrangian

L =

√
ṙ2 +

r2

1− Ω2r2
,

which has no explicit time (φ) dependence, and therefore has a conserved
hamiltonian

H = pṙ − L, where p =
∂L

∂ṙ
=

ṙ√
ṙ2 + r2

1−Ω2r2

.

So

H =
ṙ2√

ṙ2 + r2

1−Ω2r2

−
√

ṙ2 +
r2

1− Ω2r2

is a constant. Squaring this gives

H2 =
ṙ4

ṙ2 + r2

1−Ω2r2

− 2ṙ2 +

(
ṙ2 +

r2

1− Ω2r2

)

=
ṙ4

ṙ2 + r2

1−Ω2r2

− ṙ2 +
r2

1− Ω2r2

H2

(
ṙ2 +

r2

1− Ω2r2

)
= ṙ 4 − ṙ2

(
ṙ2 +

r2

1− Ω2r2

)
+

r2

1− Ω2r2

(
ṙ2 +

r2

1− Ω2r2

)

=
r4

(1− Ω2r2)2

With α2 = 1/H2 + Ω2, this gives

ṙ = ± r

1− Ω2r2

√
α2r2 − 1.


