
Physics 507 Homework Solutions #7
Due: Thursday, Oct. 21, 2010

7.1 Three springs connect two masses to each other and to immobile walls,
as shown. Find the normal modes and frequencies of oscillation, assuming
the system remains along the line shown.
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Solution 7.1: With xi measured from the left wall, and with η1 = x1− a,
η2 = x2 − 3a the displacements from equilibrium, the kinetic and potential
energies are
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The kinetic energy is already in the form where the mass matrix is a constant
multiple of the identity, so all that is necessary is to diagonalize the potential
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where O is a rotation by π/4,
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Thus the eigenfrequencies are ω1 =
√

k/m and ω2 =
√

5k/m, with corre-

sponding normal modes ζj = Re (Aje
iωjt). For the displacements ηj , the

first of these corresponds to η = O−1ζ1 = (1, 1) × Re (Aje
i
√

k/mt), with
both masses moving in the same direction. This corresponds to a body of
mass 2m and a spring constant 2k from the two springs in parallel. The

second mode is (1,−1)× Re (Aje
i
√

5k/mt), with each mass effectively cou-
pled to a fixed point with one spring with constant k and another (half of
the middle spring) with constant 4k.

7.2 Consider the motion, in a fixed vertical plane, of a double pendulum
consisting of two masses attached to each other and to a fixed point by in-
extensible strings of length L. The upper mass has mass m1 and the lower
mass m2. This is all in a laboratory with the ordinary gravitational forces
near the surface of the Earth.

a) Set up the Lagrangian for the motion, assuming
the strings stay taut.
b) Simplify the system under the approximation that
the motion involves only small deviations from equi-
librium. Put the problem in matrix form appropriate
for the procedure discussed in class.
c) Find the frequencies of the normal modes of os-
cillation. [Hint: following exactly the steps given in
class will be complex, but the analogous procedure
reversing the order of U and T will work easily.]
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Solution 7.2: The first mass has coordinates

x1 = ` sin θ1

y1 = −` cos θ1

x2 = ` (sin θ1 + sin θ2)

y2 = −` (cos θ1 + cos θ2)

so v2
1 = `2θ̇2 and

v2
2 = `2[(θ̇1 cos θ1 + θ̇2 cos θ2)

2

+(θ̇1 sin θ1 + θ̇2 sin θ2)
2]

= `2[θ̇2
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2 + 2θ̇1θ̇2 cos(θ1 − θ2)].

The potential energy is

U = m1gy1 + m2gy2

= −g` (m1 cos θ1 + m2(cos θ1 + cos θ2)) .
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For shorthand, let ρ = m1/m2. Then the Lagrangian is L = T − U , where
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b) Equilbrium is at θ1 = θ2 = 0, so to second order in the θ’s and θ̇’s,
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where an irrelevant constant term in the potential energy has been dropped.
In matrix form this gives
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c) As U is already in diagonal form, it is easier if we reverse the steps of
the procedure in the book. With y1 =

√
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This has equal diagonal elements, so we know the diagonalizing rotation is
through 45◦, or
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We now have independent oscillators, with angular frequencies given by the
square root of the ration of the coefficient in the potential to that in the
kinetic energy. Thus the two frequencies are
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7.3 (a) Show that if three mutually gravitating point masses are at the
vertices of an equilateral triangle which is rotating about an axis normal
to the plane of the triangle and through the center of mass, at a suitable
angular velocity ω, this motion satisfies the equations of motion. Thus this
configuration is an equilibrium in the rotating coordinate system. Do not
assume the masses are equal.
(b) Suppose that two stars of masses M1 and M2 are rotating in circular
orbits about their common center of mass. Consider a small mass m which is
approximately in the equilibrium position described above (which is known
as the L5 point). The mass is small enough that you can ignore its effect on
the two stars. Analyze the motion, considering specifically the stability of
the equilibrium point as a function of the ratio of the masses of the stars.

Solution 7.3: If the three particles, which have masses Mi and positions
~Ri, i = 1, 2, 3, are in an equilateral triangle of side L, then |Ri − Rj | = L
for i 6= j. Then the force on particle i is

~Fi = GMi

∑
j 6=i

Mj(~Rj − ~Ri)
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∑
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where MT =
∑

Mi is the total mass and ~R is the position of the center
of mass. If the particles are rotating about ~R with angular velocity ω, the
centripetal force required to maintain this motion is Miω

2(~R − ~Ri), so if
ω2 = GMT L−3, this is exactly what the gravitational forces do, and the
rotation satisfies the equations of motion.



(b) If the third mass M3 = m is
much smaller than the other two,
so that its effect on the motion of
the others is negligible, M1 and
M2 will circle their common center
of mass at distances M2L/(M1 +
M2) and M1L/(M1 + M2) respec-
tively. We choose rotating carte-
sian coordinates with the origin
and z-axis at the center of mass
and along ~ω respectively. From
the general equation for the ac-
celeration in a rotating reference
frame, we have
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m~̈r = ~F − 2m~ω × ~v −m~ω × (~ω × ~r),

If ~r differs from the equilibrium position ~R3 by a vector ~η, the force on m
is
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
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where we have expanded to first order in ~η, using
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The second and third terms of (1), which are independent of ~η, add as at

the equilibrium point to −GmMT
~R3/L

3 = −mω2 ~R3, where we have made

use of ~R = 0. Let ~η = (x, y, z). Then
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The z motion decouples simply: z̈ = −ω2z, which is stable oscillatory mo-
tion. The x and y coordinates have coupled second order linear differential
equations. A trial solution x = aeiαωt, y = beiαωt will satisfy the equations
if

−aα2 = 2ibα +
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A nonzero solution for (a, b) requires a vanishing determinant:
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√
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The requirement for a stable solution is that all solutions have Im α ≥ 0,

but this can only be true if 2α2 = 1±
√

1− 27(1− ξ2)/4 is real and positive.

As ξ ∈ [−1, 1] by its definition, this requires only that the argument of
the square root is nonnegative, or ξ2 ≥ 23/27. Calling M1 the greater of
the two masses, we have ξ > 0, so .923 ≤ ξ = 1 − 2M2/(M1 + M2), or
(M1 + M2)/M2 ≥ (.0385)−1 = 25.96, or

M1

M2
≥ 24.96

is required for a stable equilibrium. In that case, we have shown that the
linear equations have stable solutions. We are still not sure of absolute



stability, as higher order considerations might cause a slow deviation from
this oscillatory solution, and this problem was not solved until 19621.

The mass of the Earth is 81 times the mass of the moon, so there are
two points, called L4 and L5, after Lagrange, who discovered them, which
would be stable places to store things. This has been proposed for space
colonies. The Sun is about 1000 times more massive than Jupiter, so if the
effects of the other planets can be ignored, there should be stable points for
the Jupiter–Sun system, and indeed there are accumulations of asteroids,
called the Trojan asteroids, at both these points.

1J. K. Moser, Lectures on Hamilitonian Systems, Memoirs of the Amer. Math. Soc.,
81, 1968


