
Physics 507 Homework Solutions #11
Due: Thursday, Dec. 2, 2010

11.1 (a) Show that a particle under a central force with an attractive
potential inversely proportional to the distance squared has a conserved
quantity D = 1

2
~r · ~p−Ht.

(b) Show that the infinitesimal transformation generated by G := 1
2
~r · ~p

scales ~r and ~p by opposite infinitesimal amounts, ~Q = (1+ ε
2
)~r, ~P = (1− ε

2
)~p,

or for a finite transformation ~Q = λ~r, ~P = λ−1~p. Show that if we describe
the motion in terms of a scaled time T = λ2t, the equations of motion are
invariant under this combined transformation (~r, ~p, t) → ( ~Q, ~P , T ).

Solution 11.1: A particle under a central force with an attractive po-
tential inversely proportional to the distance squared has a Hamiltonian
H = p2/2m− k/r2. The quantity D = 1

2
~r · ~p−Ht will be conserved if

dD

dt
≡ [D, H ] +

∂D

∂t
= 0.

The last term in D has zero bracket with H , as [H, H ] = 0 by symmetry,
so the Poisson bracket is

[D, H ] =
∑

i

(
1

2

∂~r · ~p
∂ri

∂H

∂pi

− 1

2

∂~r · ~p
∂pi

∂H

∂ri

)
=

1

2

∑
i

(
pi

pi

m
− ri

2kri

r4

)
= H,

and as ∂D/∂t = −H , D is conserved
(b) Under a infinitesimal transformation generated by εG, the phase-space
coordinates change by

δη = ε[η, G].

Here G is 1
2
~r · ~p. Thus

δri = ε[ri,
1

2
~r · ~p] = ε

∂

∂pi

(
1

2
~r · ~p

)
=

1

2
ri

δpi = ε[pi,
1

2
~r · ~p] = −ε

∂

∂ri

(
1

2
~r · ~p

)
= −1

2
pi

or ~r → (1 + ε/2)~r, ~p → (1 − ε/2)~p ∼ (1 + ε/2)−1~p. Under a finite trans-

formation these factors will build up to a finite factor, and ~r → ~Q = λ~r,
~p → ~P = λ−1~p.

The equations of motion in the orginal system, with H = 1
2
p2/2m−k/r2,

are

ṗi = −∂H

∂ri

=
2kri

r4
, ṙi =

∂H

∂pi

= pi/m.

Let ~Q = λ~r, ~P = λ−1~p, t′ = λ2t, then

d~P

dt′
= λ−2 ~̇P = λ−3~̇p =

2kri

λ3r4
=

2kQi

Q4

d ~Q

dt′
= λ−2 ~̇Q = λ−1~̇r = λ−1~p = ~P ,

so the form of the Hamiltonian equations is unchanged.
Another way to see this is to note that, as G has no explicit time

dependence, the Hamiltonian is unchanged as a function on phase space,
K(Q, P ) = H(r, p), but as a function of its arguments,

K(Q, P ) = H(r, p) =
1

2m
p2 − k

r2
=

1

2m
(λP )2 − λ2k

Q2
= λ2H(Q, P ).

Thus Q and P obey the same differential equations as r and p, except that
the time derivatives are multiplied by λ2. Thus if q(t) = f(t), p(t) = g(t) is a
solution for Hamilton’s equations for H(q, p), Q(t) = f(λ2t), P (t) = g(λ2t)
is a solution for those of K(Q, P ).

11.2 Consider a particle of mass m and charge q in the field of a fixed elec-
tric dipole with dipole moment1 p. In spherical coordinates, the potential
energy is given by

U(~r) =
1

4πε0

qp

r2
cos θ.

a) Write the Hamiltonian. It is independent of t and φ. As a consequence,
there are two conserved quantities. What are they?
b) Find the partial differential equation in t, r, θ, and φ satisfied by Hamil-
ton’s principal function S, and the partial differential equation in r, θ, and
φ satisfied by Hamilton’s characteristic function W.
c) Assume W can be broken up into r-dependent, θ-dependent, and φ-
dependent pieces:

W (r, θ, φ, Pi) = Wr(r, Pi) + Wθ(θ, Pi) + Wφ(φ, Pi).

Find ordinary differential equations for Wr, Wθ and Wφ.

Solution 11.2: a) The Hamiltonian2

H(r, θ, φ, pr, pθ, pφ, t) =
p2

r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+

1

4πε0

qp

r2
cos θ

1Please note that q and p are the charge and dipole moments here, not coordinates
or momenta of the particle.

2But pr, pθ, pφ, Pi are momenta and qi are coordinates.



is time independant and therefore conserved. Also φ does not enter the
Hamiltonian, so it is an ignorable coordinate, and therefore pφ is conserved.
b) In general, S(qi, Pi, t) satisfies3

H

(
qi,

∂S

∂qi
, t

)
+

∂S

∂t
= 0,

so

1

2m

(
∂S

∂r

)2

+
1

2mr2

(
∂S

∂θ

)2

+
1

2mr2 sin2 θ

(
∂S

∂φ

)2

+
1

4πε0

qp

r2
cos θ +

∂S

∂t
= 0.

As H is time-independent, we may assume the S can be broken into the
time independent Hamilton characteristic function W (qi, Pi), together with
a piece independent of {qi}, −α(Pi)t, then

H

(
qi,

∂W

∂qi

)
= α

=
1

2m

(
∂W

∂r

)2

+
1

2mr2

(
∂W

∂θ

)2

+
1

2mr2 sin2 θ

(
∂W

∂φ

)2

+
1

4πε0

qp

r2
cos θ.

c) If W (r, θ, φ, Pi) = Wr(r, Pi) + Wθ(θ, Pi) + Wφ(φ, Pi) then

1

2m

(
dWr

dr

)2

+
1

2mr2

(
dWθ

dθ

)2

+
1

2mr2 sin2 θ

(
dWφ

dφ

)2

+
1

4πε0

qp

r2
cos θ = α.

(1)
Only the third term depends on φ, so dWφ/dφ = β, a constant, so Wφ =
βφ + a. Inserting this back into (1), and multiplying by 2mr2, we get

r2

(
dWr

dr

)2

− 2mαr2 +

(
dWθ

dθ

)2

+
β2

sin2 θ
+

mqp

2πε0

cos θ = 0.

Only the first two terms depend on r, and they depend only on r, so

r2

(
dWr

dr

)2

− 2mαr2 = γ,

a constant, and then(
dWθ

dθ

)2

+
β2

sin2 θ
+

mqp

2πε0
cos θ = −γ.

These last two equations are ordinary differential equations for Wr and Wθ.

3Pi are constants, the coordinates in the canonically transformed coordinates where
nothing changes.


