
Physics 507 Homework Solution #12

1. If we use polar coordinates, the potential energy is U = −K/r, the kinetic
energy is T = 1

2
µv2 = 1

2
µ(ṙ2 + r2θ̇2). The momenta conjugate to r and θ

are then pr = µṙ and pθ = µr2θ̇ respectively, and as the Lagrangian has
no explicit time dependence and θ is an ignorable coordinate, the Hamil-
tonian H = p2

r/2m + p2
θ/2mr2 + K/r and pθ are conserved, i.e. are inte-

grals of the motion. Note pθ is the angular momentum about the z-axis,
i.e. perpendicular to the plane.
a) Thus F1 = H and F2 = pθ are two integrals of the motion.
b) As θ does not appear in H , [H, pθ] = 0, and the two are in involution.

c) For a given ~f = (E, L), the manifold M~f consists of all points in phase
space consistent with that E and pθ = L. As the semi-major axis and el-
lipticity of the elliptical orbit is determined by E and L, M~f has all points
possible for all such ellipses. Thus its projection onto coordinate space is
an annulus with perigee and apogee rp and ra as the radii. The momentum

pr is given, modulo sign, by
√

2m(E − U(r)), so our invariant torus really
is a torus. The remaining momentum, pθ, is a constant. We may choose η0

any point on it, so let η0 = (ra, 0, 0)
The other points in η ∈ M~f are generated by the canonical transfor-

mation g~t, i.e. η = g~t(η0). The parameters t1, t2 give the parameters by
which the generators F1 = H and F2 = pθ have been applied. The mo-
mentum as a generator generates a translation in the conjugate coordinate,
so η = (r, θ, pr) = g0,t2(η0) = (ra, t2, 0), while the generator H moves the
phase space point forwards in time according to the standard newtonian
laws. Thus if we solved the Kepler problem for ~r(0) = raêx, pr(0) = 0,
pθ = L, the solution (r(t), θ(t), pr(t)) is the value η = gt,0(η0).
d) Clearly θ → θ + 2π brings us back to the same point in phase space,
so there is a periodicity under t2 → t2 + 2π. We also know the dynamical

motion is periodic with period T = πK
√

µ/2(−E)−3/2, so this is the period

of t1. Thus the ~ei are (0, 2π) and (T, 0) respectively, A is diagonal with
elements T/2π and 1, and the frequencies ωi = (A−1)i1 = (2π/T, 0).
e) The relation ω2 = 0 is a relation among the frequencies, which is there

independent of the values ~f of the integrals of the motion, so we have here
a degenerate system.

2. Using polar coordinates,

H =
p2

r

2m
+

p2
θ

2mr2
+ U(r),

for which θ is an ignorable coordinate and thus pθ = L is an integral of the

motion (and conserved). Thus F1 = H and F2 = pθ are the integrals of the
motion in involution required for our problem to be an integrable system.

The invariant torus is the region of
phase space for which H(r, θ, pr, pθ) =
E, pθ = L. (In terms of the general

discussion, ~f = (E, L).) As θ does
not enter these constraints, the torus
is the cartesian product of the one-
dimensional solution of

E =
p2

r

2m
+

L2

2mr2
+ U(r)

with the unit circle for θ. For nega-
tive E the system is bound, and the
motion r(t) is periodic, with some pe-
riod τr, with r confined to the region
r ∈ [rmin, rmax]. The evolution of θ is
also determined simply by θ̇ = L/mr2.
Notice θ̇ is not constant, but it never
changes sign.
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Fig. 1. The cross section of the in-
variant torus for a given value of θ.
This is for U(r) = −K/r3/2, with
m=1, L=1, K=1, E=− 0.8.

The action of pθ onM~f is particu-
larly simple, as Dpθ

= −∂/∂θ, and has
no effect on r or pr. DH , on the other
hand, generates the dynamical motion
expected from Newton’s equations, so
that r, pr, and θ all vary with time t1.
Suppose we chose η0 to be the point
(r = rmax, pθ = 0, θ = 0). The action
of t1H on this point,

gt1H(η0) = (r(t1), pr(t1), θ(t1)),

so given any point η = (r, pr, θ) on
M~f , we can find a t1 ∈ [−τr/2, τr/2]
determined by the magnitude of r and
the sign of pr. Then to make η =
gt1H+t2pθ(η0), we need only to choose
t2 = θ − θ(t1).
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Fig. 2. The invariant torus. The
point η0 flows under the generator
t1H to η1, and then under t2pθ to η.

The generator pθ clearly brings η0 back to itself for t2 = 2π. The action
of H is more complicated — to get back to the same (r, pr) we need t1 = τr,
but that changes θ by some angle ∆θ = θ(τr). This is undone by t2 = −∆θ.
Thus the generators of the unit cell are ~e1 = (τr,−∆θ) and ~e2 = (0, 2π).



Then as 2πAji = (~ei)j ,

A =




τr

2π
0

−∆θ

2π
1


 , A−1 =




2π

τr
0

∆θ

τr
1


 .

Defining the φi by ~t =
∑

j φj~ej/2π, (ti =
∑

j Aijφj, ~φ = A−1 · ~t), so

ωi =
(
A−1

)
i1

=

(
2π

τr

,
∆θ

τr

)
.

We see in particular that δφ2 = δt2 +∆θδt1/τr is not just the δt2 generated
by pθ, for the Hamiltonian F1 does make θ flow.

The Hamiltonian produces a flow spiraling around the torus, while pθ

produces only a rotation about the pr axis. The ratio of the frequencies is
ω2/ω1 = ∆θ/2π, so there will be a relation among the frequencies if ∆θ/2π
is rational. For example, we show the trajectories (of hamiltonian motion)
for two different energies, with ∆θ = 0.70597..× 2π and ∆θ = 2

3
× 2π.

Fig. 3. Hamiltonian flow in the situ-
ation of Fig. 1, with E = −0.8.

Fig. 4. With the energy changed to
E = −0.24, ∆θ = 4π/3, so there is a
relation among the frequencies with
k1 = 2, k2 = −3.

Each invariant torus corresponds
to a given value of E and pθ. For dif-
ferent E the tori are nested inside one
another, as shown. In the case pic-
tured here, corresponding to an at-
tractive central force F = −Kr−5/2,
the ratio of the periods depends on
the energy. In particular, Fig. 3
fits between the the torus with E =
−0.82 and the torus (half cut away
here) with E = −0.75, and both are
inside of the torus shown in Fig. 4.

E = - 0.82

E = - 0.75


