Physics 507 Homework Solutions #11
Due: Thursday, Dec. 2, 2010

11.1 (a) Show that a particle under a central force with an attractive
potential inversely proportional to the distance squared has a conserved
quantity D = %773 p— Ht.

(b) Show that the infinitesimal transformation generated by G := 37 p
scales ¥ and p by opposite infinitesimal amounts, @ = (1+35)7, P= (1-35)p,
or for a finite transformation Cj = AT, P= A~p. Show that if we describe
the motion in terms of a scaled time 7" = \?t, the equations of motion are
invariant under this combined transformation (7, p,t) — (Cj, P, T).

Solution 11.1: A particle under a central force with an attractive po-
tential inversely proportional to the distance squared has a Hamiltonian
H = p*/2m — k/r*. The quantity D = 37 p'— Ht will be conserved if
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The last term in D has zero bracket with H, as [H, H] = 0 by symmetry,
so the Poisson bracket is

D, H] = ; (2 or; Op; 2 Op; 07"1-) 2 Z <pz i e ) H,

and as 0D /0t = —H, D is conserved
(b) Under a infinitesimal transformation generated by eG, the phase-space
coordinates change by
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Here G is %r - p. Thus
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or 7 — (1+¢/2)F, p— (1 —¢€/2)p ~ (1 4+ ¢/2)"'p. Under a finite trans-
formation these factors will build up to a finite factor, and 7 — Q = A7,
F— P=X\"p

The equations of motion in the orginal system, with H = £p?/2m—Fk/r?,
are
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Let Q = A\F, P = \"17, ¢/ = A2, then
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so the form of the Hamiltonian equations is unchanged.

Another way to see this is to note that, as G has no explicit time
dependence, the Hamiltonian is unchanged as a function on phase space,
K(Q,P)= H(r,p), but as a function of its arguments,
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Thus Q and P obey the same differential equations as r and p, except that
the time derivatives are multiplied by A\%. Thus if ¢(¢) = f(t), p(t) = g(t) isa

solution for Hamilton’s equations for H(q, p), Q(t) = f(\?t), P(t) = g(\*t)
is a solution for those of K(Q, P).

K(Q.P)=Hrp) = —p— 2 = Lpp -
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= \NH(Q, P).

11.2 Consider a particle of mass m and charge ¢ in the field of a fixed elec-
tric dipole with dipole moment® p. In spherical coordinates, the potential
energy is given by

a) Write the Hamiltonian. It is independent of ¢ and ¢. As a consequence,
there are two conserved quantities. What are they?

b) Find the partial differential equation in ¢, r, 6, and ¢ satisfied by Hamil-
ton’s principal function S, and the partial differential equation in r, 6, and
¢ satisfied by Hamilton’s characteristic function W.

¢) Assume W can be broken up into r-dependent, 6-dependent, and ¢-
dependent pieces:

W(r, 0,9, P;) = W.(r, F;) + Wy(0, ;) + Wy(9, P).
Find ordinary differential equations for W,, W, and Wi.
Solution 11.2: a) The Hamiltonian?
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!Please note that ¢ and p are the charge and dipole moments here, not coordinates
or momenta of the particle.
2But p,., pg, py, P; are momenta and ¢; are coordinates.



is time independant and therefore conserved. Also ¢ does not enter the
Hamiltonian, so it is an ignorable coordinate, and therefore p, is conserved.
b) In general, S(g;, B, t) satisfies®
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As H is time-independent, we may assume the S can be broken into the

time independent Hamilton characteristic function W (g;, P;), together with
a piece independent of {¢;}, —a(F;)t, then
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) EW(r,0,¢, ) = We(r, B) + Wy (0, P) + Wy(¢, F;) then
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Only the third term depends on ¢, so dW,/d¢ = (3, a constant, so Wy =
B¢+ a. Inserting this back into (1), and multiplying by 2mr?, we get
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Only the first two terms depend on r, and they depend only on r, so
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These last two equations are ordinary differential equations for W, and Wj.

3P; are constants, the coordinates in the canonically transformed coordinates where
nothing changes.



