Physics 507  Homework Solution #9
Due: Nov. 11, 2010

9.1 Two lagrangians, L; and Lo, which differ by a total time derivative of
a function on extended configuration space,

Lat{anh {1 1) = Laach {0k )+ S (ar, ),

describe the same dynamics. That is, they give the same equations of
motion ¢;(t), but they give differing momenta pgl) and pl(?). Find the rela-
tionship between the two momenta and between the two Hamiltonians, H;
and Hs, and show that these Hamiltonians lead to equivalent equations of
motion.

Solution 9.1:  If @ is a function of ¢; and ¢, a total time derivative is
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If we have an original Lagrangian L, with momenta p; ) and Hamiltonian

H,, defining a new Lagrangian
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leads to new momenta
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and a new Hamiltonian
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The new equations of motion are
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agreeing with what the equation of motion from the original Hamiltonian.

9.2 A uniform static magnetic field can be described by a static vector
potential A= %E x 7. A particle of mass m and charge ¢ moves under the
influence of this field.

(a) Find the Hamiltonian, using inertial cartesian coordinates.
(b) Find the Hamiltonian, using coordinates of a rotating system with an-
gular velocity & = —q§/2mc.



Solution 9.2:  a.) At the end of Chapter 2, we found the velocity
dependent potential which describes an electromagnetic field to be

Uem = q ((r,t) — 7 A(F 1) c).
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Here we have ¢ = 0 and A= %B x 7. We also have an additional nonelec-
tromagnetic term U (7). Thus
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L7, 7,t) = =mi* + L(B x 7) -7 — U(7).
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The momentum is
F=mi+ LB x7,
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so the Hamiltonian is
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(b.) In terms of a rotating coordinate system,
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so the Lagrangian is
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If 6= —qB /2me, the term linear in 7 vanishes, and we have
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Notice that we now have a Hamiltonian of the most usual kind, with a
non-velocity-dependent potential,
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9.3 (a) Show directly that the transformation

Qzln(sm—p), P =qcotp
q

is canonical.
(b) Show directly that, for a arbitrary fixed constant c,
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Solution:  (a) From
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we need the partial derivatives

is canonical.

0Q 1 -1 1 0Q 1 cosp
o T I g Smp=——, a1 = cotp,
dq Ssinp q q dp =sinp ¢

or = cot op = csc?

With n = (Z) and ¢ = (g)
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so this transformation satisfies the necessary condition, M - .J - MT

be canonical.

(b) With

we have
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1See alternative short cut at end of (b).
2 Again, see short cut below
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Short cut for single degree of freedom

=J, to
In general we need to check M -.J - MT = J, but that is very easy for a
two dimensional M. Because both sides are automatically antisymmetric,
there is just one equation on the matrix elements. With
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— (ad — be) <_01 (1)) ,
so all we need to check is that det M = ad — bc = 1.
For more degrees of freedom, however, det M = 1 is not sufficient.
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