
Physics 507 Homework Solutions #5
Due: Thursday, Oct. 7, 2010

5.1 Consider a particle constrained to move on the surface described in
cylindrical coordinates by z = αr3, subject to a constant gravitational force
~F = −mgêz. Find the Lagrangian, two conserved quantities, and reduce the
problem to a one dimensional problem. What is the condition for circular
motion at constant r?

Solution 5.1: The potential energy is U = mgz = mgαr3, while the
kinetic energy is

T =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
=
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m
[
1 + (3αr2)2

]
ṙ2 +

1

2
mr2θ̇2,

so
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2
m
(
1 + 9α2r4

)
ṙ2 +
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mr2θ̇2 −mgαr3.

The coordinate θ is ignorable, so

Pθ =
∂L

∂θ̇
= mr2θ̇ is conserved.

The Hamiltonian

H = Pθθ̇ + Prṙ − L =
P 2

θ

mr2
+ m

(
1 + 9α2r4

)
ṙ2 − L

=
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θ

2mr2
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)
ṙ2 + mgαr3

is also conserved, because dH/dt = −∂L/∂t = 0. Considering Pθ as a fixed
constant, this gives us a one dimensional problem in r. The equation of
motion follows either from Lagrange’s equation in the r coordinate or from
dH/dt = 0,

m
(
1 + 9α2r4

)
r̈ + 18mα2r3ṙ2 − P 2

θ

mr3
+ 3mgαr2 = 0.

For circular motion at a constant r, ṙ = r̈ = 0, so P 2
θ /mr3 = 3mgαr2, or

Pθ = m
√

3gαr5.

5.2 Suppose a particle of mass m moves under the influence of a power-
law central force, ~F = −crpêr, and is observed to have an orbit which is a
circle of radius R passing through the point of attraction.

Find what values the power p could be, what is the angular momentum
about the center of force, and what is the energy relative to U(∞).

How do θ̇, ẏ, and ẋ behave as the particle approaches the origin, as a
function of r as r → 0?. Is this consistent with x taking its minimum value
at that point?

Solution 5.2: Take the center of the circular orbit to be at ρ = R, θ =
0 in polar coordinates, so an arbitrary point on the circular orbit is at

(ρ=2R cos θ, θ) in polar coordinates and
(x=R+R cos 2θ, y=R sin 2θ) in cartesian
coordinates. The angular momentum
about the origin is Lz = mρ2θ̇ =
4mR2 cos2 θ θ̇, where the first expression is
as usual, but could also have been found
from Lz = m(xẏ − yẋ) using

ẋ = −2R sin(2θ)θ̇, ẏ = −2R cos(2θ)θ̇.

Of course Lz is conserved, a constant, as
we have a central force here. The constant
energy is
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E =
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2
m(ẋ2 + ẏ2) + U(ρ) = 2mR2θ̇2 + U(ρ).

For the central force ~F = −crpêr, U(|~r|) = c
p+1
|~r|p+1, so

E = 2mR2θ̇2 + U(2R cos θ) = 2mR2
(

Lz

4mR2 cos2 θ

)2

+
c

p + 1
(2R cos θ)p+1 ,

which is only possible for all |θ| ≤ π/2 only if p = −5, E = 0. And then
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.

Of course in order to have a finite angular momentum about the origin
as the particle passes through the origin, the velocity must blow up dra-
matically. In terms of the polar distance ρ, θ̇ must blow up quadratically
(i.e. θ̇ ∼ ρ−2), which must also be true for ẏ. Most surprising is the behav-
ior of x as the particle passes through the origin. As x takes its minimum
value there, we might expect that x = ẋ = 0 at that moment, but it is not
so. In fact, ẋ = −2R sin(2θ)θ̇ blows up, because ρ ≈ y = R sin 2θ vanishes
linearly, while θ̇ blows up quadratically, so dx/dt changes sign my going
through ∞, not zero!



Hamilton’s Principle tells us that the motion of a particle is determined
by the action functional being stationary under small variations of the path
Γ in extended configuration space (t, ~x). The unsymmetrical treatment of
t and ~x(t) is not suitable for relativity, but we may still associate an action
with each path, which we can parameterize with λ, so Γ is the trajectory
λ→ (t(λ), ~x(λ)).

In the general relativistic treatment of a particle’s motion in a gravita-
tional field, the action is given by mc2∆τ , where ∆τ is the elapsed proper
time, ∆τ =

∫
dτ . But distances and time intervals are measured with a spa-

tial varying metric gµν , with µ and ν ranging from 0 to 3, with the zeroth
component referring to time. The four components of extended configura-
tion space are written xµ, with a superscript rather than a subscript, and
x0 = ct. The other three xµ can be generalized coordinates, as long as gµν is
appropriate. In the next problem they are similar to spherical coordinates.
The gravitational field is described by the space-time dependence of the
metric gµν(x

ρ). In this language, an infinitesimal element of the path of a

particle corresponds to a proper time dτ = (1/c)
√∑

µν gµνdxµdxν , so

S = mc2∆τ = mc
∫

dλ

√√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ
.

This is in preparation for the next problem which is worth 20 points,
twice normal.

5.3 In problem 2.12 we learned that the general-relativistic motion of a
particle in a gravitational field is given by Hamilton’s variational principle
on the path xµ(λ) with the action

S =
∫

dλL with L = mc

√√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ
,

where we may freely choose the path parameter λ to be the proper time
(after doing the variation), so that the

√
is c, the speed of light.

The gravitational field of a static point mass M is given by the
Schwartzschild metric

g00 = 1−2GM

rc2
, grr = −1

/(
1− 2GM

rc2

)
, gθθ = −r2, gφφ = −r2 sin2 θ,

where all other components of gµν are zero. Treating the four xµ(λ) as
the coordinates, with λ playing the role of time, find the four conjugate

momenta pµ, show that p0 and pφ = L are constants, and use the freedom
to choose

λ = τ =
1

c

∫ √√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ

to show m2c2 =
∑

µν gµνpµpν , where gµν is the inverse matrix to gαβ. Use
this to show that

dr
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=

√√√√κ−
(
−2GM

r
+
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m2r2
− 2GML2

m2r3c2

)
,

where κ is a constant. For an almost circular orbit at the minimum r = a of
the effective potential this implies, show that the precession of the perihelion
is 6πGM/ac2.

Find the rate of precession for Mercury, with G = 6.67×10−11 Nm2/kg2,
M = 1.99 × 1030 kg and a = 5.79 × 1010 m, per revolution, and also per
century, using the period of the orbit as 0.241 years.

Solution 5.3: Defining the (four) conjugate momenta as usual by

pµ :=
∂L
∂ẋµ

= mc

∑
ν gµν(x)ẋν√∑

αβ gαβ(x)ẋαẋβ
→ m

∑
ν

gµν(x)ẋν

where dot means d/dλ, and the arrow means after setting λ to be the
proper time. Defining gµν to be the inverse matrix to gαβ , we then have
ẋµ =

∑
ν gµνpν/m. Lagrange’s equations gives us

d
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For the Schwartzschild metric, no gαβ depends on x0 = ct or on φ, so
these are ignorable coordinates and the momenta p0 and pφ are constants,
which we will call −E and ±L respectively (choosing L ≥ 0). In the
equatorial plane, θ = π/2, all the ∂gαβ/∂θ are zero, as the only one not
trivially so is ∂gφφ/∂θ = −2r2 sin θ cos θ → 0. Thus dpθ/dτ = 0, and if a
particle starts off with θ = π/2, pθ = 0 this will remain true, the motion
will be restricted to the equatorial plane, just as in non-relativistic motion.

Now the condition that τ is the proper time is

m2c2 = m2
∑
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∑
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=
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−
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=
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Thus
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=
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−
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Compare to the non-relativistic expression

NR:
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=

√√√√ 2

m

(
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r
− L2
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)
.

We see that aside from the constant no longer being called the energy and
the time being replaced by proper time, the only effect of general relativity
is to add the r−3 term to the effective potential (per unit mass)

Ueff(r) = −GM

r
+

L̃2

2r2
− GML̃2

r3c2
,

where L̃ = L/m is the angular momentum per unit mass, and we still have
|φ̇| = |L/mgφφ| = L̃/r2, so the question of precession of the perihelion is as
before, but with an effective potential with a small negative 1/r3 term.

To calculate the precession of Mercury, we can assume this last term is
small, and that the orbit is close to circular, near the minimum of Ueff(r),
so we evaluate

dUeff(r)

dr
=

GM
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− L̃2

r3
+ 3

GML̃2

r4c2
,

so the minimum of Ueff(r) is at r = a where

GMa2 − L̃2a + 3
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= 0,

or
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L̃2 ±

√
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.

The first → makes use of the smallness of GM/cL̃, and for the second we
choose the plus sign. The other sign shows that the potential turns strongly
attractive for very small r, which corresponds to falling into the black hole,
but Mercury is in no danger of getting past that potential barrier.

The second derivative of Ueff(r) gives the effective spring constant,

k =
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so the period of oscillation is

Tosc = 2π
√

2/k ≈ 2π

√
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(
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GM
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)

while the period of revolution is Trev = 2π/φ̇ = 2πa2/L̃, but as
L̃2 = GMa (1 + 3GM/ac2), this is

Trev = 2π

√
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(
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The precession of the perihelion is

2π
(

Tosc
Trev

− 1
)

= 2π × 3GM

c2a
.

With G = 6.67 × 10−11 Nm2/kg2, M = 1.99 × 1030 kg and a = 5.79 ×
1010 m, the precession is 4.81× 10−7 rad = 0.0992′′ per revolution. The pe-
riod of Mercury’s orbit is 0.241 years, so in a century this is 415 revolutions
for a total precession of 41.1 seconds of arc per century.


