
Physics 507 Homework Solutions #10
Due: Thursday, Nov. 18, 2010

10.1 [20 points] We have considered k-forms in 3-D Euclidean space and
their relation to vectors expressed in cartesian basis vectors. We have seen
that k-forms are invariant under change of coordinatization of M, so we
can use them to examine the forms of the gradient, curl, divergence and
laplacian in general coordinates in three dimensional space. We will restrict
our treatment to orthogonal curvilinear coordinates (q1, q2, q3), for which we
have, at each point p ∈M, a set of orthonormal basis vectors êi directed
along the corresponding coordinate, so that dqi(êj) = 0 for i 6= j. We
assume they are right handed, so êi · êj = δij and êi × êj =

∑
k εijkêk. The

dqi are not normalized measures of distance, so we define hi(p) so that
dqi(êj) = h−1

i δij (no sum).

(a) For a function f(q1, q2, q3) and a vector ~v =
∑

viêi, we know that df(~v) =

~v · ~∇f . Use this to find the expression for ~∇f in the basis êi.
(b) Use this to get the general relation of a 1-form

∑
ωidqi to its associated

vector ~v =
∑

viêi.
(c) If a 1-form ω(a) is associated with ~v(a) and 1-form ω(b) is associated with
~v(b), we know the 2-form ω(a) ∧ ω(b) is associated with ~v(a) × ~v(b). Use this
to find the general association of a 2-form with a vector.
(d) We know that if a 1-form ω is associated with a vector ~v, then dω is

associated with ~∇×~v. Use this to find the expression for ~∇×~v in orthogonal
curvilinear coordinates.
(e) If the 1-form ω is associated with ~v and the 2-form Ω is associated with
~F , we know that ω ∧ Ω is associated with the scalar ~v · ~F . Use this to find
the general association of a 3-form with a scalar.
(f) If the 2-form Ω is associated with ~v, we know that dΩ is associated with

the divergence of ~v. Use this to find the expression for ~∇ · ~v in orthogonal
curvilinear coordinates.
(g) Use (a) and (f) to find the expression for the laplacian of a scalar,

∇2f = ~∇ · ~∇f , in orthogonal curvilinear coordinates.

Solution 10.1: (a) df(~v) =
∑

vj
∂f

∂qi
dqi(êj) =

∑
h−1

i vi
∂f

∂qi
, so

~∇f =
∑

h−1
i

∂f

∂qi

êi.

(b) As df =
∑ ∂f

∂qi
dqi is associated with

∑
h−1

i

∂f

∂qi
êi, we may more gen-

erally associate a 1-form
∑

ωidqi with ~v = h−1
i ωiêi. Also we can note∑

i ωidqi(êj) = ωj/hj , so dqi(êj) = δij/hj.

(c) ω(a)∧ω(b) =
∑

ij ω
(a)
i ω

(b)
j dqi∧dqj =

∑
ij Bijdqi⊗dqj with Bij = ω

(a)
i ω

(b)
j −

ω
(b)
i ω

(a)
j . The vector1 ~v(a)×~v(b) =

∑
ijk εijkv

(a)
i v

(b)
j êk =

∑
ijk εijk(hihj)

−1ω
(a)
i ω

(b)
j êk =

~C =
∑

k Ckêk, where Ck =
∑

ij εijk(hihj)
−1ω

(a)
i ω

(b)
j . More generally, a two

form B =
∑

Bijdqi ⊗ dqj is associated with Ck = 1
2

∑
ij εijk(hihj)

−1Bij , or
Bij =

∑
ij εijkhihjCk.

(d) With ω =
∑

ωidqi associated with ~v =
∑

viêi, which requires ωi = hivi,

we have dω =
∑
ij

∂hivi

∂qj

dqj ∧ dqi =
∑
ij

(
∂hjvj

∂qi

− ∂hivi

∂qj

)
dqi ⊗ dqj , which is

associated with ~C = ~∇× ~v =
∑

Ckêk with

Ck =
1

2

∑
ij

εijk(hihj)
−1

(
∂hjvj

∂qi
− ∂hivi

∂qj

)
=
∑
ij

εijk(hihj)
−1 ∂hjvj

∂qi
.

(e) If ω =
∑

` h`v` dq`, and

Ω =
∑
ijk

εijkhihjFkdqi ⊗ dqj =
1

2

∑
ijk

εijkhihjFkdqi ∧ dqj ,

we have

ω ∧ Ω =
1

2

∑
ijk`

h`v`εijkhihjFkdq` ∧ dqi ∧ dqj

=
1

2

∑
ijk`

εijkε`ijh`v`hihjFk dq1 ∧ dq2 ∧ dq3

=


 3∏

j=1

hj


∑

k

vkFk dq1 ∧ dq2 ∧ dq3.

This corresponds to the scalar ~v · ~F =
∑

k vkFk, so more generally a 3-form
φ dq1 ∧ dq2 ∧ dq3 corresponds to the scalar field φ/

∏3
1 hi.

(f) With Ω = 1
2

∑
ijk εijkhihjvkdqi ∧ dqj,

dΩ =
1

2

∑
ijk`

εijk
∂hihjvk

∂q`
dq` ∧ dqi ∧ dqj

=
1

2

∑
ijk`

εijkε`ij
∂hihjvk

∂q`
dq1 ∧ dq2 ∧ dq3

=
∑

`

∂

∂q`

(
h1h2h3v`

h`

)
dq1 ∧ dq2 ∧ dq3

1In differential geometry, or in the discussion of forms without the restriction to
orthonormal basis vectors, one introduces the Levi-Civita symbol εijk (with D subscripts
in D dimensional space), which is proportional to, but not equal to, the flat-space εijk for
which ε123 = 1. The relation is εijk =

√| det g..|εijk, where g.. is the metric tensor. The
volume element is then given by the D-form

∑
εµ1,...µD dqµ1 ∧ · · · ∧ dqµD . But here we

will only use εijk, not εijk. Note the notational distinction I have made is not standard.



which is associated with the scalar
1

h1h2h3

∑
`

∂

∂q`

(
h1h2h3v`

h`

)
.

Thus ~∇ · ~v =
1

h1h2h3

∑
`

∂

∂q`

(
h1h2h3v`

h`

)
.

(g) As ~∇f =
∑

h−1
i

∂f

∂qi

êi is the vector with coefficients v` = h−1
`

∂f

∂q`

,

~∇ · ~∇f =
1

h1h2h3

∑
`

∂

∂q`

(
h1h2h3

h2
`

∂f

∂q`

)

is the laplacian of f .

10.2 Consider the unusual Hamiltonian for a one-dimensional problem

H = ω(x2 + 1)p,

where ω is a constant.

(a) Find the equations of motion, and solve for x(t).

(b) Consider the transformation to new phase-space variables P = αp
1
2 ,

Q = βxp
1
2 . Find the conditions necessary for this to be a canoni-

cal transformation, and find a generating function F (x, Q) for this
transformation.

(c) What is the Hamiltonian in the new coordinates?

Solution 10.2:

(a) ẋ =
∂H

∂p
= ω(x2 + 1), ṗ = −∂H

∂x
= −2ωxp. From the first equation,

∫
dx

x2 + 1
=
∫

ωdt, or tan−1 x = ωt+ δ, ⇒ x = tan(ωt+ δ).

(b) The new variables Q = βxp
1
2 and P = αp

1
2 are canonical if

[Q, P ] = 1 = βp
1
2

α

2p
1
2

=
αβ

2
,

so all that is needed is β = 2/α. For a generating function of type 1,
we need to solve p(x, Q) = Q2β−2x−2 = α2Q2/4x2, but

p =
∂F

∂x

∣∣∣∣∣
Q

⇒ F (x, Q) = −α2Q2

4x
+ f(Q).

Then P = −∂F/∂Q = α2Q
2x
− f ′(Q) = αp

1
2 − f ′(Q) = αp

1
2 , which

implies f ′(Q) = 0, and we can drop the unknown constant f .

(c) As the transformation is not time-dependent, the Hamiltonian is ob-

tained simply by substituting p = P 2/α2 and x = Q/(βp
1
2 ) = αQ/(βP ) =

1
2
α2Q/P . Thus we have

H = ω

(
α24Q2

4P 2
+ 1

)
P 2

α2
= ω

(
α2Q2

4
+

P 2

α2

)
.

If we choose ω =
√

k/m and α = (4km)1/4, this becomes

H =
k

2
Q2 +

1

2m
P 2,

our standard harmonic oscillator. Note if Q = A sin(ωt + δ), P =
AmQ̇ = 1

2
α2A cos(ωt + δ), and x = 1

2
α2Q/P = tan(ωt + δ) in agree-

ment with our previous solution.


