
Physics 507 Homework Solution #9
Due: Nov. 11, 2010

9.1 Two lagrangians, L1 and L2, which differ by a total time derivative of
a function on extended configuration space,

L1({qi}, {q̇j}, t) = L2({qi}, {q̇j}, t) +
d

dt
Φ(q1, ..., qn, t),

describe the same dynamics. That is, they give the same equations of
motion qi(t), but they give differing momenta p

(1)
i and p

(2)
i . Find the rela-

tionship between the two momenta and between the two Hamiltonians, H1

and H2, and show that these Hamiltonians lead to equivalent equations of
motion.

Solution 9.1: If Φ is a function of qi and t, a total time derivative is

dΦ

dt
=
∑

i

∂Φ

∂qi
q̇i +

∂Φ

∂t
.

If we have an original Lagrangian L2 with momenta p
(2)
i and Hamiltonian

H2, defining a new Lagrangian

L1 = L2 +
∑

i

∂Φ

∂qi
q̇i +

∂Φ

∂t

leads to new momenta

p
(1)
i =

∂L1

∂q̇i
=

∂L2

∂q̇i
+

∂Φ

∂qi
= p

(2)
i +

∂Φ

∂qi

and a new Hamiltonian

H1 =
∑

i

p
(1)
i q̇i − L1 =

∑
i

(
p

(2)
i q̇i +

∂Φ

∂qi
q̇i

)
− L2 −

∑
i

∂Φ

∂qi
q̇i − ∂Φ

∂t

= H2 − ∂Φ

∂t
.

The new equations of motion are

q̇i =
∂H1

∂p
(1)
i

∣∣∣∣∣
q

=
∑
j

∂H2

∂p
(2)
j

∣∣∣∣∣∣
q

∂p
(2)
j

∂p
(1)
i

∣∣∣∣∣∣
q

=
∂H2

∂p
(2)
i

∣∣∣∣∣
q

ṗ
(1)
i = − ∂H1

∂qi

∣∣∣∣∣
p(1)

= − ∂H2

∂qi

∣∣∣∣∣
p(1)

+
∂2Φ

∂qi∂t
.

We need to evaluate by the chain rule

∂H2

∂qi

∣∣∣∣∣
p(1)

=
∑
j

∂H2

∂qj

∣∣∣∣∣
p(2)

∂qj

∂qi

∣∣∣∣∣
p(1)

+
∑
j

∂H2

∂p
(2)
j

∣∣∣∣∣∣
q

∂p
(2)
j

∂qi

∣∣∣∣∣∣
p(1)

=
∑
j

∂H2

∂qj

∣∣∣∣∣
p(2)

δij +
∑
j

∂H2

∂p
(2)
j

∣∣∣∣∣∣
q

∂p
(2)
j

∂qi

∣∣∣∣∣∣
p(1)

=
∂H2

∂qi

∣∣∣∣∣
p(2)

−∑
j

q̇j
∂2Φ

∂qi∂qj
.

Thus

ṗ
(1)
i = − ∂H2

∂qi

∣∣∣∣∣
p(2)

+
∑
j

q̇j
∂2Φ

∂qi∂qj
+

∂2Φ

∂qi∂t
= − ∂H2

∂qi

∣∣∣∣∣
p(2)

+
d

dt

∂Φ

∂qi
.

Then

ṗ
(2)
i = ṗ

(1)
i − d

dt

∂Φ

∂qi

= − ∂H2

∂qi

∣∣∣∣∣
p(2)

,

agreeing with what the equation of motion from the original Hamiltonian.

9.2 A uniform static magnetic field can be described by a static vector
potential ~A = 1

2
~B × ~r. A particle of mass m and charge q moves under the

influence of this field.
(a) Find the Hamiltonian, using inertial cartesian coordinates.
(b) Find the Hamiltonian, using coordinates of a rotating system with an-

gular velocity ~ω = −q ~B/2mc.



Solution 9.2: a.) At the end of Chapter 2, we found the velocity
dependent potential which describes an electromagnetic field to be

Uem = q
(
φ(r, t)− ~v · ~A(~r, t)/c

)
.

Here we have φ ≡ 0 and ~A = 1
2
~B × ~r. We also have an additional nonelec-

tromagnetic term U(~r). Thus

L(~r, ~v, t) =
1

2
m~v 2 +

q

2c
( ~B × ~r) · ~v − U(~r).

The momentum is
~p = m~v +

q

2c
~B × ~r,

so the Hamiltonian is

H = ~v · ~p− L =
1

2
m~v 2 + U(~r)

=
p2

2m
− q

2mc
~p ·
(
~B × ~r

)
+

q2

8mc2
( ~B × ~r)2 + U(~r).

(b.) In terms of a rotating coordinate system,

~v =

(
d~r

dt

)
b

+ ~ω × ~r,

so the Lagrangian is

L =
1

2
m

(
d~r

dt

)2

b

+ m

(
d~r

dt

)
b

· (~ω × ~r) +
1

2
m(~ω × ~r)2

+
q

2c
( ~B × ~r) ·

(
d~r

dt

)
b

+
q

2c
( ~B × ~r) · (~ω × ~r)− U(~r)

=
1

2
m

(
d~r

dt

)2

b

+ m

(
d~r

dt

)
b

·
([

~ω +
q

2mc
~B
]
× ~r

)

+
1

2
m(~ω × ~r) ·

([
~ω +

q

mc
~B
]
× ~r

)
− U(~r)

If ~ω = −q ~B/2mc, the term linear in ṙ vanishes, and we have

L =
1

2
m

(
d~r

dt

)2

b

− q2

8mc2
( ~B × ~r)2 − U(~r).

Then

~p = m~̇r, H =
p2

2m
+

q2

8mc2
( ~B × ~r)2 + U(~r).

Notice that we now have a Hamiltonian of the most usual kind, with a
non-velocity-dependent potential,

U ′(~r) = U(~r) +
q2

8mc2

[
B2r2 − ( ~B · ~r)2

]
= U(~r) +

q2B2

8mc2
r2
⊥.

9.3 (a) Show directly that the transformation

Q = ln

(
sin p

q

)
, P = q cot p

is canonical.
(b) Show directly that, for a arbitrary fixed constant α,

Q = arctan

(
αq

p

)
, P =

αq2

2

(
1 +

p2

α2q2

)

is canonical.

Solution: (a) From

Q = ln

(
sin p

q

)
, P = q cot p

we need the partial derivatives

∂Q

∂q
=

1
1
q
sin p

−1

q2
sin p = −1

q
,

∂Q

∂p
=

1
1
q
sin p

cos p

q
= cot p,

∂P

∂q
= cot p,

∂P

∂p
= −q csc2 p

With η =
(

q
p

)
and ζ =

(
Q
P

)
,

M =
(−1/q cot p

cot p −q csc2 p

)
,



So1

M · J ·MT =
(−1/q cot p

cot p −q csc2 p

)(
0 1
−1 0

)(−1/q cot p
cot p −q csc2 p

)

=
(−1/q cot p

cot p −q csc2 p

)(
cot p −q csc2 p
1/q − cot p

)

=

(−1
q
cot p + 1

q
cot p csc2 p− cot2 p

cot2 p− csc2 p −q cot p csc2 p + q cot p csc2 p

)

=
(

0 1
−1 0

)
= J

so this transformation satisfies the necessary condition, M · J ·MT = J , to
be canonical.

(b) With

Q = arctan

(
αq

p

)
, P =

αq2

2

(
1 +

p2

α2q2

)

we have

∂Q

∂q
=

α

p

1

1 + α2q2

p2

=
αp

p2 + α2q2

∂Q

∂p
= −αq

p2

1

1 + α2q2

p2

= − αq

p2 + α2q2

∂P

∂q
= αq,

∂P

∂p
=

p

α

So2

M =




αp

p2 + α2q2
− αq

p2 + α2q2

αq
p

α




M · J ·MT =




αp

p2 + α2q2
− αq

p2 + α2q2

αq
p

α



(

0 1
−1 0

)
αp

p2 + α2q2
αq

− αq

p2 + α2q2

p

α




1See alternative short cut at end of (b).
2Again, see short cut below

=




αp

p2 + α2q2
− αq

p2 + α2q2

αq
p

α






−αq

p2 + α2q2

p

α

− αp

p2 + α2q2
−αq




=




α2pq − α2pq

(p2 + α2q2)2

p2 + α2q2

(p2 + α2q2)
−α2q2 + p2

(p2 + α2q2)
pq − pq


 =

(
0 1
−1 0

)
= J.

Short cut for single degree of freedom

In general we need to check M · J ·MT = J , but that is very easy for a
two dimensional M . Because both sides are automatically antisymmetric,
there is just one equation on the matrix elements. With

M =
(

a b
c d

)
, M · J ·MT =

(
a b
c d

)(
0 1
−1 0

)(
a c
b d

)

= (ad − bc)
(

0 1
−1 0

)
,

so all we need to check is that det M = ad− bc = 1.
For more degrees of freedom, however, det M = 1 is not sufficient.


