
Physics 507 Homework Solution #4
Due: Thursday, Sept. 30, 2010

4.1 A transformer consists of two coils of conductor each of which has an
inductance, but which also have a coupling, or mutual inductance.

If the current flowing into the upper posts of
coils A and B are IA(t) and IB(t) respectively, the
voltage difference or EMF across each coil is VA

and VB respectively, where
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Consider the circuit shown, two
capacitors coupled by a such a
transformer, where the capaci-
tances are CA and CB respectively,
with the charges q1(t) and q2(t)
serving as the generalized coordi-
nates for this problem. Write down
the two second order differential
equations of “motion” for q1(t) and
q2(t), and write a Lagrangian for
this system.
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Solution 4.1: We have defined IA and IB in directions so that they repre-
sent the rate of decrease in the charges q1 and q2 respectively. The voltage
differences are given by VA = q1/CA, VB = q2/CB, so

q1

CA
= −LA

d2q1

dt2
−M

d2q2

dt2

q2

CB
= −LB

d2q2

dt2
−M

d2q1

dt2

Can we get this from a Lagrangian L =
∑

ij
1
2
mij q̇iq̇j − U(q1, q2), with

mij = mji? That gives equations of motion
∑

j mij q̈j + ∂U/∂qi = 0, so if
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)
and U =

q2
1

2CA

+
q2
2

2CB

,

we get the required equations. Note that this is just what one would expect,
with the potential energy U given by the usual expression for the energy

stored in capacitors, and the “kinetic energy” consisting of not just the
self-inductors 1

2
LAI2

A + 1
2
LBI2

B, but also the interaction of the overlapping
magnetic fields, MIAIB.

4.2 A space ship is in circular orbit at radius R and speed v1, with the
period of revolution τ1. The crew wishes to go to planet X, which is in
a circular orbit of radius 2R, and to revolve around the Sun staying near
planet X. They propose to do this by firing two blasts, one putting them in
an orbit with perigee R and apogee 2R, and the second, when near X, to
change their velocity so they will have the same speed as X.

• (a) By how much must the first blast change their velocity? Express
your answer in terms of v1.

• (b) How long will it take until they reach the apogee? Express your
answer in terms of τ1

• (c) By how much must the second blast change their speed? Will they
need to slow down or speed up, relative to the sun.

Solution 4.2: For motion about a fixed star, the period is proportional to

a3/2, and the total energy ∝ a−1, where a is
the semimajor axis. For the circular paths,
the virial theorem tells us E = −T =
V/2 = −K/2a. The initial circular path
(1), the elliptical path of transit (E), and
the final circular path (X) have semimajor
axes of a1 = R, aE = 3

2
R, and aX = 2R re-

spectively, so they have total energies E1 =
−K/2R, EE = −K/3R, EX = −K/4R re-
spectively, and periods τ1, τE = (3/2)3/2τ1,
τX = 23/2τ1 respectively.
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The circular initial and final kinetic energies are T1 = K/2R and TX =
K/4R, with potential energies U1 = −K/R and UX = −K/2R respectively.

Immediately after the first blast, the potential energy is unchanged at
−K/R but the total is now EX = −K/3R, so the kinetic TEi is 2K/3R, or

4/3 the initial value. Thus the new velocity is vEi =
√

4/3 v1 which means
the blast increased their speed by

∆v1 = (
√

4/3− 1)v1



in the forward direction. The trip takes one half orbital period, or

τtrip = τE/2 = (3/2)3/2τ1/2.

What is their speed when then reach planet X? One way to find out is
from the energy, as their potential energy will be the same as for the circular
orbit of X, UEf = −K/2R, while their total energy is still UE = −K/3R,
so their kinetic energy is now TEf = K/6R, for a velocity vEf = v1/

√
3.

Easier is to use conservation of angular momentum, LzE = RvEi = 2RvEf ,
so vEf = 1

2
vEi = v1/

√
3. But vX = v1/

√
2 as Tx = 1

2
T1. Thus they need to

accelerate forward to increase their velocity by

∆vX = (1/
√

2− 1/
√

3)v1.

4.3 For the Kepler problem we have the relative position tracing out an
ellipse. What is the curve traced out by the momentum in momentum
space? Show that it is a circle centered at ~L × ~A/L2, where ~L and ~A are
the angular momentum and Runge-Lenz vectors respectively.

Solution 4.3: From ~A = ~p× ~L− µK~r/r, we have

~L× ~A = ~L× (~p× ~L)− µ2K

r
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as ~p is perpendicular to ~L. So
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which is a constant. Of course ~p is confined to the plane perpendicular to
~L, so the path is a circle of radius µK/|L| centered at ~L× ~A/L2.

4.4 The Rutherford cross section implies all incident projectiles will be
scattered and emerge at some angle θ, but a real planet has a finite radius,
and a projectile that hits the surface is likely to be captured rather than
scattered.

What is the capture cross section for an airless planet of radius R and
mass M for a projectile with a speed v0? How is the scattering differential
cross section modified from the Rutherford prediction?

Solution 4.4: The projectile will be captured if the perigee rp < R. The
initial energy and angular momentum are E = 1

2
mv2

0 and L = mbv0. At
the perigee rp, the velocity vp is perpendicular to the radius, so L = mrpvp

and E = 1
2
mv2

p − GMm/rp. Thus vp = bv0/rp and 1
2
mv2

0 = 1
2
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2
p −

GMm/rp. The impact parameter b0 corresponding to a perigee of R is given

by b0 = R
√

1 + 2GM
Rv2

0
, and the total capture cross section

σcap = πb2
0 = πR2

(
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0

)
.

The scattering will be unchanged from Rutherford for impact parame-
ters b > b0 corresponding to angles less than the angle θ0 corresponding to
that impact parameter, that is,

tan
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.

There will be no scattering for angles larger than θ0.


