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These things were listed in More, on Oct 30, 1997:

chaplagr/dissipation.tex has nothing in it except a header.

chaplagr/varconstr.tex Variations with constraints we didn’t reach a
satisfactory conclusion:

0.0.1 Variations with constraints

In our discussion of Hamilton’s Principle, we assumed that we could work
with a set of generalized coordinates qi which were unconstrained. This set
may have been what was left after eliminating some holonomic constraints
from the original coordinates, as for example ~r ⇒ {q} = (θ, φ) for the gim-
balled rod, but in any case it was essential to extracting (??) from δI = 0
that the δqi are independent arbitrary functions of time. In considering a disk
rolling on a plane (section ??) we saw that there are sometimes anholonomic
constraints of the form

Φα(qj, q̇`, t) = 0, α = 1...k, (1)

which cannot be solved to eliminate some of the qj and leave only independent
coordinates. How can we make a variation which respects such constraints?

First let us consider the simpler situation in which the variation is of
a finite number of coordinates and not a functional variation. Suppose we
want to maximize f(x1, ...xN) subject to constraints φα(x1, ...xN) = 0, α =

1...k, k < N . Generically, at an arbitrary point ~x, the k vectors ~∇φα will
be linearly independent and will span a k-dimensional subspace VU . The
variations1 allowed by the constraints will be perpendicular to this subspace,
and form a N − k dimensional subspace VA. The condition that f is a
stationary point under variations on VA says that ~∇f =

∑
α λα

~∇Φα for some
set of constants λα, for arbitrary variations of ~x. We may thus solve the
N + k equations

~∇
(
f −

∑
α

λαΦα

)
= 0,

φα = 0,

1The variations considered here are infinitesimal, and the subspaces discussed here are,
strictly speaking, statements about the tangent space, which is a vector space on which
δf is a linear function of δ~x.



2

for the N+k variables ~x and λα. If there are several stationary points, the λα

need not be the same, so in general they will depend on the solution found.
They are called Lagrange multipliers.

For variation of the action subject to the constraints (1), we might try to
do the corresponding thing, which is to ask that the action S̃ =

∫
(L−∑

α λα(t)Φα) dt
be stationary under all variations δq(t), subject to the additional constraints
Φα = 0.
This appears not to work.!!!
The first requirement leads to the N conditions

d

dt

∂L

∂q̇i
− ∂L

∂qi
−
∑
α

d

dt

(
λα
∂Φα

∂q̇i

)
+
∑
α

λα
∂Φα

∂qi
= 0. (2)

If the constraints Φα are linear in the velocities,

Φα(q̇i, qi, t) =
∑
j

aαj(q, t)q̇j + bα(q, t),

then

d

dt

(∑
α

λα
∂Φα

∂q̇i

)
−
∑
α

λα
∂Φα

∂qi

=
d

dt

(∑
α

λα(t)aαi(q, t)

)
−
∑
αj

λα
∂aαj

∂qi
q̇j −

∑
αj

λα
∂bα(q, t)

∂qi

=
∑
α

dλα(t)

dt
aαi(q, t) +

∑
α

λα(t)

(
q̇j
∂aαi

∂qj
+
∂aαi

∂t

)

−
∑
αj

λα
∂aαj

∂qi
q̇j −

∑
αj

λα
∂bα(q, t)

∂qi
...

chaplagr/wolinsky a note about pulling on a string on a ball on a string:

\input wolinsky

chaplagr/nosubst,tex dont plug eq of motion into Lagrange
When we have a Lagrangian with an ignorable coordinate, say θ, and

therefore a conjugate momentum Pθ which is conserved and can be considered
a constant, we are able to reduce the problem to one involving one fewer
degrees of freedom. That is, one can substitute into the other differential
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equations the value of θ̇ in terms of Pθ and other degrees of freedom, so
that θ and its derivatives no longer appear in the equations of motion. For
example, consider the two dimensional isotropic harmonic oscillator,

L =
1

2
m
(
ẋ2 + ẏ2

)
− 1

2
k
(
x2 + y2

)
=

1

2
m
(
ṙ2 + r2θ̇2

)
− 1

2
kr2

in polar coordinates. The equations of motion are

Ṗθ = 0, where Pθ = mr2θ̇,

mr̈ = −kr +mrθ̇2 =⇒ mr̈ = −kr + P 2
θ

/
m2r3.

The last equation is now a problem in the one degree of freedom r.
One might be tempted to substitute for θ̇ into the Lagrangian
and then have a Lagrangian involving one fewer degrees of free-
dom. In our example, we would get

L =
1

2
mṙ2 +

P 2
θ

2m2r2
− 1

2
kr2,

which gives the equation of motion

mr̈ = − P 2
θ

m2r3
− kr.



This is
wrong

Notice that the last equation has the sign of the P 2
θ term reversed from

the correct equation. Why did we get the wrong answer? In deriving the
Lagrange equation which comes from varying r, we need

d

dt

∂L

∂ṙ

∣∣∣∣∣
r,θ,θ̇

=
∂L

∂r

∣∣∣∣∣
ṙ,θ,θ̇

.

But we treated Pθ as fixed, which means that when we vary r on the right
hand side, we are not holding θ̇ fixed, as we should be. While we often
write partial derivatives without specifying explicitly what is being held fixed,
they are not defined with such a specification, which we are expected to
understand implicitly. However, there are several examples in Physics, such
as thermodynamics, where this implicit understanding can be unclear, and
the results may not be what was intended.
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chappert/adiabnot.tex notes triggered by Harry, not yet integrated
(really?) No, I think it is all in adiab.tex

Here are files that appear in the exers subdirectory but not in the input
exercises.tex file:

chappk, chaplagr: None
chap2b/exers/hodograph.tex:

0.1 For the Kepler problem we have the relative position tracing out an
ellipse. What is the curve traced out by the momentum in momentum space?
Show that it is a circle centered at ~l× ~A/L2, where ~L and ~A are the angular
momentum and Runge-Lenz vectors respectively.

ex:hodograph From ~A = ~p× ~L− µK~r/r, we have

~L× ~A = ~L× (~p× ~L)− µ2K

r
(~r × ~p)× ~r

= L2~p− ~L(~p · ~L)− µ2K

r
(r2~p− ~r(~r · ~p))

= L2~p− µ2K

r
(r2~p− ~r(~r · ~p))

as ~p is perpendicular to ~L. So

p−
~L× ~A

L2
=
µ2K

rL2
(r2~p− ~r(~r · ~p))

and p− ~L× ~A

L2

2

=
µ4K2

r2L4
(r4p2 − r2(~r · ~p)2) =

µ4K2

L4
(~r × ~p)2 =

µ2K2

L2
,

which is a constant. Of course ~p is confined to the plane perpendicular to ~L,
so the path is a circle of radius µK/|L| centered at ~L× ~A/L2.

chaprigid/exers/asymtop.tex:

0.2 Write the Lagrangian for the asymmetric top, with I1 6= I2. How many
constants of the motion can you find for this problem?
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ex:topelliptic In the body fixed principal axis coordinates,

L =
1

2

∑
i

Iiω
2
i −Mg` cos θ

=
1

2
I1(θ̇ sinψ − φ̇ sin θ cosψ)2 +

1

2
I2(θ̇ cosψ + φ̇ sin θ sinψ)2

+
1

2
I3(ψ̇ + φ̇ cos θ)2 −Mg` cos θ

=
1

2
I1(θ̇

2 sin2 ψ + φ̇2 sin2 θ cos2 ψ − 2θ̇φ̇ sin θ sinψ cosψ)

+
1

2
I2(θ̇

2 cos2 ψ + φ̇2 sin2 θ sin2 ψ + 2θ̇φ̇ sin θ sinψ cosψ)

+
1

2
I3(ψ̇ + φ̇ cos θ)2 −Mg` cos θ

=
1

2
θ̇2(I1 sin2 ψ + I2 cos2 ψ) +

1

2
φ̇2 sin2 θ(I1 cos2 ψ + I2 sin2 ψ)

−θ̇φ̇(I1 − I2) sin θ sinψ cosψ

+
1

2
I3(ψ̇ + φ̇ cos θ)2 −Mg` cos θ

=
1

4
(I1 + I2)(θ̇

2 + φ̇2 sin2 θ)

+
1

4
(I1 − I2)(−θ̇2 cos 2ψ + φ̇2 sin2 θ cos 2ψ − 2θ̇φ̇ sin θ sin 2ψ)

+
1

2
I3(ψ̇ + φ̇ cos θ)2 −Mg` cos θ

This simplification hasn’t helped much. What are the constants of the mo-
tion? As the Lagrangian has no explicit time or φ dependence, the energy
and pφ are conserved. In the symmetric case where I1 = I2, there was also
no explicit dependence on ψ, but that is not true here.

chaprigid/exers/rollpenny.tex

0.3 A thin disk of uniform material and radius a, rolls around
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a circle of radius b on a horizontal surface.
It is tilted from the vertical by exactly the
angle θ required so that it continues in this
situation, make circuits around the circle
of radius b in time T Assuming that θ � 1
and that the frictional forces do no work,
find the angle θ in terms of the other pa-
rameters.

a

b

Ω= 2π
T

θ

ex:rollpenny The disk is rotating around the center of the large circle with angular velocity
Ω = 2π/T at the same time it is rotating about its center of mass with an
angular velocity ω. As the point of contact with the ground is not moving,
and as the smallness of θ permits us to take the distance the center of mass
is from the axis to be b, we have aω = bΩ. The angular momentum has a
piece coming from the rotation of the center of mass about the large circle, a
constant in the upwards direction, and a contribution from the rotation of the
disk about its center of mass, Iω = 1

2
a2mω, which has a horizontal component

towards the center of the circle of magnitude Lr = 1
2
a2mω cos θ ∼ 1

2
a2mω. As

this vector is rotating with angular velocity Ωêz,
d~L
dt

= 1
2
a2mωΩ = 1

2
abmΩ2

in the direction the disk is rolling.

This change in ~L must be caused by the net

torque about the center of mass. ~̇L = af cos θ −
mg sin θ ∼ af − mgθ, where f is the centripetal
force required, f = mΩ2b, so abmΩ2 − mgθ =
1
2
abmΩ2, or

θ =
3

2
abΩ2.

mg
θ

f
a

chapso: none

chapham/exers/canona.tex:

0.4 Consider the unusual Hamiltonian for a one-dimensional problem

H = ω(x2 + 1)p,

where ω is a constant.

(a) Find the equations of motion, and solve for x(t).
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(b) Consider the transformation to new phase-space variables P = αp
1
2 ,

Q = βxp
1
2 . Find the conditions necessary for this to be a canonical

transformation, and find a generating function F (x,Q) for this trans-
formation.

(c) What is the Hamiltonian in the new coordinates?

ex:canona

(a) ẋ =
∂H

∂p
= ω(x2 + 1), ṗ = −∂H

∂x
= −2ωxp. From the first equation,

∫ dx

x2 + 1
=
∫
ωdt, or tan−1 x = ωt+ δ, ⇒ x = tan(ωt+ δ).

(b) The new variables Q = βxp
1
2 and P = αp

1
2 are canonical if

[Q,P ] = 1 = βp
1
2
α

2p
1
2

=
αβ

2
,

so all that is needed is β = 2/α. For a generating function of type 1,
we need to solve p = Q2β−2x−2 = α2Q2/4x2, but

p =
∂F

∂x

∣∣∣∣∣
Q

⇒ F (x,Q) = −α
2Q2

4x
+ f(Q).

Then P = −∂F/∂Q = α2Q
2x

+ f ′(Q) = αp
1
2 + f ′(Q) ⇒ f ′(Q) = 0, and

we can drop the unknown constant f .

(c) As the transformation is not time-dependent, the Hamiltonian is ob-

tained simply by substituting p = P 2/α2 and x = Q/(βp
1
2 ) = αQ/(βP ) =

1
2
α2Q/P . Thus we have

H = ω

(
α24Q2

4P 2
+ 1

)
P 2

α2
= ω

(
α2Q2

4
+
P 2

α2

)
.

If we choose ω =
√
k/m and α = (4km)1/4, this becomes

H =
k

2
Q2 +

1

2m
P 2,

our standard harmonic oscillator. Note if Q = A sin(ωt + δ), P =
AmQ̇ = 1

2
α2A cos(ωt+δ), and x = 1

2
α2Q/P = tan(ωt+δ) in agreement

with our previous solution.
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chappert/exers/adiabpend.tex:

0.5 Consider a mass m hanging at the end of a length of string which
passes through a tiny hole, forming a pendulum. The length of string below
the hole, `(t) is slowly shortened by someone above the hole pulling on the
string. How does the amplitude (assumed small) of the oscillation of the
pendulum depend on time? (Assume there is no friction).

ex:adiabpend The angular frequency of oscillation is ω(t) =
√
g/`(t), and the displacement

is q(t) = A(t) sin[ω(t)t + δ(t)], where A, ` and δ all vary slowly during one
oscillation. The momentum is p(t) = mq̇(t) ≈ mA(t)ω(t) cos[ω(t)t + δ(t)].
The action is

J(t) =
∫
pdq = A2(t)ω2(t)

∫ 2π/ω

0
cos2(ωt+ δ)dt = πA2(t)ω(t),

where we have extracted the slowly varying quantities from the short time
integral. But if the length of the string is varied slowly,

˙̀

`
� 1

τ
=

1

2π
ω(t) =

1

2π

√
g/`(t), or ˙̀�

√
g`,

the action is an adiabatic invariant, so A2(t)ω(t) is constant, or

A(t) ∝ [ω(t)]−1/2 ∝ [`(t)]1/4.

chappert/exers/defines.tex:

0.6 Define precisely or explain clearly what is meant by
a) apsidal angle,
b) closed 2-form,
c) seperatrix,
d) anholonomic constraint,
e) invariant set of states,
f) natural symplectic structure on phase space.

ex:pertdefs (a) The apsidal angle, for bound state motion in the two body central
force problem, is the angle subtended at the center of force, between any
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perigee and the following apogee, and also the angle between any apogee and
the following perigee.
b) A closed 2-form ω =

∑
i<j Bijdxi ∧ dxj is a 2-form on which the exterior

derivative vanishes,

dω =
∑
k

∑
i<j

Bij,kdxk ∧ dxi ∧ dxj = 0.

This implies (for Bij = −Bji) that Bij,k +Bki,j +Bjk,i = 0.
c) A seperatrix in a 2nd order dynamical system with a conserved quantity,
is an invariant set of states, terminating at an unstable fixed point, which
divides phase space into regions with qualitatively different behaviors. For
example, in the figure on P. 36 of my book, the egg shape line which reaches
a cusp at the fixed point is one, and each of the two lines which terminate
at the fixed point are two others.
d) An anholonomic constraint on the coordinates and velocities of a physical
system is a constraint which can not be rewritten in terms of an equation
involving only the coordinates and some arbitrary fixed parameters. It might
be an equation involving the velocities or it might be an inequality.
e) An invariant set of states in phase space is a minimum set of points in
phase space which are mapped into each other under the dynamical motion,
forwards or backwards through any time interval.
f) The natural symplectic structure on phase space is the 2-form ω2 =

∑
i dpi∧

dqi. Despite its representation in terms of a particular set of coordinates and
conjugate momenta, it is invariant under any canonical transformation.

chappert/exers/fsol.tex:

0.7 what is the question?

ex:LandA By definition, the momentum fields conjugate to ~A and φ are given by

πi =
∂L
∂Ȧi

=
∂L
∂Ei

∂Ei

∂Ȧi

= −1

c
Ei

πφ =
∂L
∂φ̇

= 0.

The last condition is quite unusual, because will it is not unusual to get
an equation of motion which says the momentum is constant, getting one
which sets it to a specific value means the the momentum cannot be chosen
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arbitrarily for an initial condition, or equivalently as a point in phase space.
This peculiarity has to do with the gauge invariance in electromagnetism,
but we can’t go into that in more detail here, except as mentioned below.

The Lagrange equations are generally

d

dt

∂L
∂η̇i

+
∑
j

d

dxj

∂L
∂∂ηi/∂xj

− ∂L
∂ηi

= 0.

In this case ηi = (φ,Ai), and in each case the Lagrange density depends only
on the derivatives of the ηi and not on ηi itself. We need

∂L
∂∂φ/∂xj

=
∑

i

∂L
∂Ei

∂Ei

∂∂φ/∂xj

= −Ej,

∂L
∂∂Ai/∂xj

=
∑
k

∂L
∂Bk

∂Bk

∂∂Ai/∂xj

= (−Bk)(εkij).

For φ this gives
d

dt
0−

∑
j

d

dxj

Ej = 0, or ~∇ · E = 0,

which is Gauss’ law in empty space, while for Ai we have

0 =
d

dt

(
−1

c
Ei

)
+
∑
j

∂

∂xj

(εijkBk) =

~∇×B − 1

c

d ~E

dt


i

.

These, of course, are two of Maxwell’s equations, the ones that come from
setting Jµ = 0, for empty space. The other two come simply from the

definition of ~E and ~B in terms of ~A and φ.
chappert/exers/ramp.tex:

0.8 A particle of mass m slides without friction on a flat
ramp which is hinged at one end, at which
there is a fixed wall. When the mass hits
the wall it is reflected perfectly elastically.
An external agent changes the angle α
very slowly compared to the interval be-
tween successive times at which the parti-
cle reaches a maximum height. If the angle
varies from from an initial value of αI to
a final value αF , and if the maximum ex-
cursion is LI at the beginning, what is the
final maximum excursion LF ?
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L
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ex:adiabramp For any fixed angle α the Hamiltonian is

H =
p2

2m
+mgx sinα,

where x is the distance from the fixed wall. In the course of one bounce the
energy is approximately conserved,

E =
1

2
mv2 +mgx sinα = mgL sinα,

so

v =
√

2g sinα(L− x)

J =
∫
p dx = m

∫
v(x)dx = m

√
2g sinα× 2

∫ L

0

√
L− xdx

=
4m

3

√
2gL3 sinα

The action is an adiabatic invariant, so J is the same at the start and the
end,

L3
I sinαI = L3

F sinαF , or LF = LI

(
sinαI

sinαF

)1/3

.

fields: none
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