
1

0.1 Consider the harmonic oscillator H = p2/2m + 1
2
mω2q2 as a pertur-

bation on a free particle H0 = p2/2m. Find Hamilton’s Principle Function
S(q, P ) which generates the transformation of the unperturbed hamiltonian
to Q,P the initial position and momentum. From this, find the Hamiltonian
K(Q,P, t) for the full harmonic oscillator, and thus equations of motion for
Q and P . Solve these iteratively, assuming P (0) = 0, through fourth order
in ω. Express q and p to this order, and compare to the exact solution for
an harmonic oscillator.

ex:timedepp For a free particle p = p(0) = P , q(t) = q(0) + p(0)t/m = Q + Pt/m, so
q = Q + Pt/m, which is generated by S(q, P, t) = qP − P 2t/2m. The full
hamiltonian in these coordinates is

K(Q,P, t) = H(q, p) +
∂S

∂t
=
m

2
ω2
(
Q+

Pt

m

)2

,

giving the equations of motion

Q̇ = ω2t
(
Q+

Pt

m

)
, Ṗ = −mω2

(
Q+

Pt

m

)
.

Solving iteratively ζn+1(t) = ζ(0) +
∫ t
0 ζ̇n(t′)dt′, with P (0) = 0, we get

Q1 =
(
1 + 1

2
ω2t2

)
Q(0)

Q2 =
(
1 + 1

2
ω2t2 − ω4t4/8

)
Q(0)

P1 = −mω2tQ(0)

P2 = (−mω2t+mω4t3/6)Q(0)
.

The new and old momenta are the same, but the coordinate q now has an
expansion

q2(t) = Q2 + P2t/m =

(
1− 1

2
ω2t2 +

ω4t4

24

)
Q(0),

which is just the first few terms of the power series expansion of the exact
solution q(t) = Q(0) cosωt. Similarly the expansion for p(t) is the beginning
of the expansion for the exact solution p(t) = −mωQ(0) sinωt.

0.2 Consider the Kepler problem in two dimensions. That is, a particle of
(reduced) mass µ moves in two dimensions under the influence of a potential

U(x, y) = − K√
x2 + y2

.
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This is an integrable system, with two integrals of the motion which are in
involution. In answering this problem you are expected to make use of the
explicit solutions we found for the Kepler problem.
a) What are the two integrals of the motion, F1 and F2, in more familiar
terms and in terms of explicit functions on phase space.
b) Show that F1 and F2 are in involution.
c) Pick an appropriate η0 ∈ M~f , and explain how the coordinates ~t are

related to the phase space coordinates η = g~t(η0). This discussion may be
somewhat qualitative, assuming we both know the explicit solutions of Chap-
ter 3, but it should be clearly stated.
d) Find the vectors ~ei which describe the unit cell, and give the relation
between the angle variables φi and the usual coordinates η. One of these
should be explicit, while the other may be described qualitatively.
e) Comment on whether there are relations among the frequencies and whether
this is a degenerate system.

ex:intsyskep If we use polar coordinates, the potential energy is U = −K/r, the kinetic
energy is T = 1

2
µv2 = 1

2
µ(ṙ2 + r2θ̇2. The momenta conjugate to r and θ

are then pr = µṙ and pθ = µr2θ̇ respectively, and as the Lagrangian has no
explicit time dependence and θ is an ignorable coordinate, the Hamiltonian
H = p2

r/2m+p2
θ/2mr

2+K/r and pθ are conserved, i.e. are integrals of the mo-
tion. Note pθ is the angular momentum about the z-axis, i.e. perpendicular
to the plane.
a) Thus F1 = H and F2 = pθ are two integrals of the motion.
b) As θ does not appear in H, [H, pθ] = 0, and the two are in involution.

c) For a given ~f = (E,L), the manifold M~f consists of all points in phase
space consistent with that E and pθ = L. As the semi-major axis and el-
lipticity of the elliptical orbit is determined by E and L, M~f has all points
possible for all such ellipses. Thus its projection onto coordinate space is an
annulus with perigee and apogee rp and ra as the radii. The momentum pr

is given, modulo sign, by
√

2m(E − U(r)), so our invariant torus really is a
torus. The remaining momentum, pθ, is a constant. We may choose η0 any
point on it, so let η0 = (ra, 0, 0)

The other points in η ∈ M~f are generated by the canonical transfor-

mation g~t, i.e. η = g~t(η0). The parameters t1, t2 give the parameters by
which the generators F1 = H and F2 = pθ have been applied. The momen-
tum as a generator generates a translation in the conjugate coordinate, so
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η = (r, θ, pr) = g0,t2(η0) = (ra, t2, 0), while the generator H moves the phase
space point forwards in time according to the standard newtonian laws. Thus
if we solved the Kepler problem for ~r(0) = raêx, pr(0) = 0, pθ = L, the solu-
tion (r(t), θ(t), pr(t)) is the value η = gt,0(η0).
d) Clearly θ → θ + 2π brings us back to the same point in phase space, so
there is a periodicity under t2 → t2+2π. We also know the dynamical motion

is periodic with period T = πK
√
µ/2(−E)−3/2, so this is the period of t1.

Thus the ~ei are (0, 2π) and (T, 0) respectively, A is diagonal with elements
T/2π and 1, and the frequencies ωi = (A−1)i1 = (T/2π, 0).
e) The relation ω2 = 0 is a relation among the frequencies, is there inde-

pendent of the values ~f of the integrals of the motion, so we have here a
degenerate system.

0.3 Consider a mass m hanging at the end of a length of string which
passes through a tiny hole, forming a pendulum. The length of string below
the hole, `(t) is slowly shortened by someone above the hole pulling on the
string. How does the amplitude (assumed small) of the oscillation of the
pendulum depend on time? (Assume there is no friction).

ex:adiabpend The angular frequency of oscillation is ω(t) =
√
g/`(t), and the displacement

is q(t) = A(t) sin[ω(t)t + δ(t)], where A, ` and δ all vary slowly during one
oscillation. The momentum is p(t) = mq̇(t) ≈ mA(t)ω(t) cos[ω(t)t + δ(t)].
The action is

J(t) =
∫
pdq = A2(t)ω2(t)

∫ 2π/ω

0
cos2(ωt+ δ)dt = πA2(t)ω(t),

where we have extracted the slowly varying quantities from the short time
integral. But if the length of the string is varied slowly,

˙̀

`
� 1

τ
=

1

2π
ω(t) =

1

2π

√
g/`(t), or ˙̀�

√
g`,

the action is an adiabatic invariant, so A2(t)ω(t) is constant, or

A(t) ∝ [ω(t)]−1/2 ∝ [`(t)]1/4.
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0.4 A particle of mass m slides without friction on a flat
ramp which is hinged at one end, at which
there is a fixed wall. When the mass hits
the wall it is reflected perfectly elastically.
An external agent changes the angle α
very slowly compared to the interval be-
tween successive times at which the parti-
cle reaches a maximum height. If the angle
varies from from an initial value of αI to
a final value αF , and if the maximum ex-
cursion is LI at the beginning, what is the
final maximum excursion LF ?
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ex:adiabramp For any fixed angle α the Hamiltonian is

H =
p2

2m
+mgx sinα,

where x is the distance from the fixed wall. In the course of one bounce the
energy is approximately conserved,

E =
1

2
mv2 +mgx sinα = mgL sinα,

so

v =
√

2g sinα(L− x)

J =
∫
p dx = m

∫
v(x)dx = m

√
2g sinα× 2

∫ L

0

√
L− xdx

=
4m

3

√
2gL3 sinα

The action is an adiabatic invariant, so J is the same at the start and the
end,

L3
I sinαI = L3

F sinαF , or LF = LI

(
sinαI
sinαF

)1/3

.

0.5 Consider a particle of mass m and charge q in the field of a fixed electric
dipole with moment ~p. Using spherical coordinates with the axis in the ~p
direction, the potential energy is given by

U(~r) =
1

4πε0

qp

r2
cos θ.
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There is no explicit t or φ dependence, so H and pφ = Lz are conserved.
a) Show that

A = p2
θ +

p2
φ

sin2 θ
+
qpm

2πε0
cos θ

is also conserved.
b) Given these three conserved quantities, what else must you show to find
if this is an integrable system? Is it true? What, if any, conditions are there
for the motion to be confined to an invariant torus?

ex:dipoleIS a) The Hamiltonian is

H =
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+

1

4πε0

qp

r2
cos θ

=
p2
r

2m
+

1

2mr2
A,

where

A = p2
θ +

p2
φ

sin2 θ
+
qpm

2πε0
cos θ.

A contains neither r nor pr, so it has zero Poisson bracket with p2
r/2m and

with 1/(2mr2), and with itself, of course, so [A,H] = 0. A is also time
independent, so

dA

dt
= [A,H] +

∂A

∂t
= 0,

and A is conserved.
b) The three conserved quantities must be in involution; that is, they must
have zero Poisson brackets. pφ and A have already been shown to have zero
Poisson brackets with H, but it is also true that, because φ does not appear
in A, [A, pφ] = 0, so the three are in involution, and we have an integrable
system.

Thus the motion is confined to a region with fixed E, A, and pφ. Then

p2
r = 2mE − A/(2mr2),

and the allowed region of r is determined by the signs and relative magnitudes
of E and A. This rules out A > 0, E < 0, as there would then be no possible
values of r. If A < 0, E > 0, there is a lower bound on |pr| = m|ṙ|, so the
motion in r cannot be bounded. This is terminating motion at r = 0, not an
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invariant torus. If E and A have the same sign the right hand side vanishes

at some r0, and we have ṙ ∝
√
r−2
0 − r−2, or

t ∝
∫ dr√

r−2
0 − r−2

=
∫ rdr√

r2/r2
0 − 1

∝
∫ du√

u− 1
= ln(u− 1),

which diverges as u → 1, or r → r0. Thus the motion begins or ends
(depending on the sign taken for the square root) at r0, and ends or begins
at either r = 0 or r = ∞, depending on the signs of E and A. In no case
is it an invariant torus, and in no case a bounded region of phase space. Of
course, the one point E = A = 0, r = constant is a lower dimensional torus.


