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3.3 Consider a particle constrained to move on the surface described in cylindrical
coordinates by z = αr3, subject to a constant gravitational force ~F = −mgêz.
Find the Lagrangian, two conserved quantities, and reduce the problem to a one
dimensional problem. What is the condition for circular motion at constant r?

3.4 From the general expression for φ as an integral over r, applied to a three
dimensional symmetrical harmonic oscillator U(~r) = 1

2kr
2, integrate the equation,

and show that the motion is an ellipse, with the center of force at the center of
the ellipse. Consider the three complex quantities Qi = pi − i

√
kmri, and show

that each has a very simple equation of motion, as a consequence of which the
nine quantities Q∗iQk are conserved. Identify as many as possible of these with
previously known conserved quantities.

3.5 Show that if a particle under the influence of a central force has an orbit
which is a circle passing through the point of attraction, then the force is a power
law with |F | ∝ r−5. Assuming the potential is defined so that U(∞) = 0, show
that for this particular orbit E = 0. In terms of the diameter and the angular
momentum, find the period, and by expressing ẋ, ẏ and the speed as a function of
the angle measured from the center of the circle, and its derivative, show that ẋ, ẏ
and the speed all go to infinity as the particle passes through the center of force.

3.6 For the Kepler problem we have the relative position tracing out an ellipse.
What is the curve traced out by the momentum in momentum space? Show that
it is a circle centered at ~L× ~A/L2, where ~L and ~A are the angular momentum and
Runge-Lenz vectors respectively.

3.7 The Rutherford cross section implies all incident projectiles will be scattered
and emerge at some angle θ, but a real planet has a finite radius, and a projectile
that hits the surface is likely to be captured rather than scattered.
What is the capture cross section for an airless planet of radius R and mass M
for a projectile with a speed v0? How is the scattering differential cross section
modified from the Rutherford prediction?

3.8 In problem 2.12 we learned that the general-relativistic motion of a particle
in a gravitational field is given by Hamilton’s variational principle on the path
xµ(λ) with the action

S =
∫
dλL with L = mc

√√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ
,
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where we may freely choose the path parameter λ to be the proper time (after
doing the variation), so that the

√
is c, the speed of light.

The gravitational field of a static point mass M is given by the
Schwartzschild metric

g00 = 1− 2GM
rc2

, grr = −1
/(

1− 2GM
rc2

)
, gθθ = −r2, gφφ = −r2 sin2 θ,

where all other components of gµν are zero. Treating the four xµ(λ) as the coordi-
nates, with λ playing the role of time, find the four conjugate momenta pµ, show
that p0 and pφ = L are constants, and use the freedom to choose

λ = τ =
1
c

∫ √√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ

to show m2c2 =
∑
µν g

µνpµpν , where gµν is the inverse matrix to gαβ . Use this to
show that

dr

dτ
=

√
κ−

(
−2GM

r
+

L2

m2r2
− 2GML2

m2r3c2

)
,

where κ is a constant. For an almost circular orbit at the minimum r = a of
the effective potential this implies, show that the precession of the perihelion is
6πGM/ac2.
Find the rate of precession for Mercury, with G = 6.67 × 10−11 Nm2/kg2, M =
1.99 × 1030 kg and a = 5.79 × 1010 m, per revolution, and also per century, using
the period of the orbit as 0.241 years.



Chapter 4

Rigid Body Motion

In this chapter we develop the dynamics of a rigid body, one in which all
interparticle distances are fixed by internal forces of constraint. This is,
of course, an idealization which ignores elastic and plastic deformations to
which any real body is susceptible, but it is an excellent approximation for
many situations, and vastly simplifies the dynamics of the very large number
of constituent particles of which any macroscopic body is made. In fact, it
reduces the problem to one with six degrees of freedom. While the ensuing
motion can still be quite complex, it is tractible. In the process we will be
dealing with a configuration space which is a group, and is not a Euclidean
space. Degrees of freedom which lie on a group manifold rather than Eu-
clidean space arise often in applications in quantum mechanics and quantum
field theory, in addition to the classical problems we will consider such as
gyroscopes and tops.

4.1 Configuration space for a rigid body

A macroscopic body is made up of a very large number of atoms. Describing
the motion of such a system without some simplifications is clearly impos-
sible. Many objects of interest, however, are very well approximated by the
assumption that the distances between the atoms in the body are fixed1,

|~rα − ~rβ| = cαβ = constant. (4.1)

1In this chapter we will use Greek letters as subscripts to represent the different particles
within the body, reserving Latin subscripts to represent the three spatial directions.
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This constitutes a set of holonomic constraints, but not independent ones, as
we have here 1

2
n(n− 1) constraints on 3n coordinates. Rather than trying to

solve the constraints, we can understand what are the generalized coordinates
by recognizing that the possible motions which leave the interparticle lengths
fixed are combinations of

• translations of the body as a whole, ~rα → ~rα + ~C,

• rotations of the body about some fixed, or “marked”, point.

We will need to discuss how to represent the latter part of the configuration,
(including what a rotation is), and how to reexpress the kinetic and potential
energies in terms of this configuration space and its velocities.

The first part of the configuration, describing the translation, can be
specified by giving the coordinates of the marked point fixed in the body,
R̃(t). Often, but not always, we will choose this marked point to be the

center of mass ~R(t) of the body. In order to discuss other points which are
part of the body, we will use an orthonormal coordinate system fixed in the
body, known as the body coordinates, with the origin at the fixed point
R̃. The constraints mean that the position of each particle of the body has
fixed coordinates in terms of this coordinate system. Thus the dynamical
configuration of the body is completely specified by giving the orientation of
these coordinate axes in addition to R̃. This orientation needs to be described
relative to a fixed inertial coordinate system, or inertial coordinates, with
orthonormal basis êi.

Let the three orthogonal unit vectors defining the body coordinates be
ê′i, for i = 1, 2, 3. Then the position of any particle α in the body which has
coordinates b′αi in the body coordinate system is at the position ~rα = R̃ +∑
i b
′
αiê

′
i. In order to know its components in the inertial frame ~rα =

∑
i rαiêi

we need to know the coordinates of the three vectors ê′i in terms of the inertial
coordinates,

ê′i =
∑
j

Aij êj. (4.2)

The nine quantities Aij, together with the three components of R̃ =
∑
R̃iêi,

specify the position of every particle,

rαi = R̃i +
∑
j

b′αjAji,
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and the configuration of the system is completely specified by R̃i(t) and
Aij(t).

The nine real quantities in the matrix Aij are not independent, for the
basis vectors ê′i of the body-fixed coordinate system are orthonormal,

ê′i · ê′k = δik =
∑
j`

AijAk`êj · ê` =
∑
j`

AijAk`δj` =
∑
j

AijAkj,

or in matrix languag AAT = 1I. Such a matrix of real values, whose transpose
is equal to its inverse, is called orthogonal, and is a transformation of basis
vectors which preserves orthonormality of the basis vectors. Because they
play such an important role in the study of rigid body motion, we need to
explore the properties of orthogonal transformations in some detail.

4.1.1 Orthogonal Transformations

There are two ways of thinking about an orthogonal transformation A and
its action on an orthonormal basis, (Eq. 4.2). One way is to consider that
{êi} and {ê′i} are simply different basis vectors used to describe the same

physical vectors in the same vector space. A vector ~V is the same vector
whether it is expanded in one basis ~V =

∑
j Vj êj or the other ~V =

∑
i V

′
i ê
′
i.

Thus

~V =
∑
j

Vj êj =
∑
i

V ′
i ê
′
i =

∑
ij

V ′
iAij êj,

and we may conclude from the fact that the êj are linearly independent
that Vj =

∑
i V

′
iAij, or in matrix notation that V = ATV ′. Because A is

orthogonal, multiplying by A (from the left) gives V ′ = AV , or

V ′
i =

∑
j

AijVj. (4.3)

Thus A is to be viewed as a rule for giving the primed basis vectors in terms
of the unprimed ones (4.2), and also for giving the components of a vector in
the primed coordinate system in terms of the components in the unprimed
one (4.3). This picture of the role of A is called the passive interpretation.

One may also use matrices to represent a real physical transformation
of an object or quantity. In particular, Eq. 4.2 gives A the interpretation
of an operator that rotates each of the coordinate basis ê1, ê2, ê3 into the
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corresponding new vector ê′1, ê
′
2, or ê′3. For real rotation of the physical

system, all the vectors describing the objects are changed by the rotation
into new vectors ~V → ~V (R), physically different from the original vector, but
having the same coordinates in the primed basis as V has in the unprimed
basis. This is called the active interpretation of the transformation. Both
active and passive views of the transformation apply here, and this can easily
lead to confusion. The transformation A(t) is the physical transformation
which rotated the body from some standard orientation, in which the body
axes ê′i were parallel to the “lab frame” axes êi, to the configuration of the
body at time t. But it also gives the relation of the components of the same
position vectors (at time t) expressed in body fixed and lab frame coordinates.

If we first consider rotations in two dimensions, it is clear that they are
generally described by the counterclockwise angle θ through which the basis
is rotated,

ê′1 = cos θê1 + sin θê2

ê′2 = − sin θê1 + cos θê2

corresponding to the matrix

A =
(

cos θ sin θ
− sin θ cos θ

)
. (4.4)

θ

1

2
1’
’

^

^ ^

^

2θ

Clearly taking the transpose simply changes the sign of θ, which is just
what is necessary to produce the inverse transformation. Thus each two
dimensional rotation is an orthogonal transformation. The orthogonality
equation A · AT = 1 has four matrix elements. It is straightforward to show
that these four equations on the four elements of A determine A to be of
the form (4.4) except that the sign of the bottom row is undetermined. For
example, the transformation ê′1 = ê1, ê

′
2 = −ê2 is orthogonal but is not

a rotation. Let us call this transformation P . Thus any two-dimensional
orthogonal matrix is a rotation or is P followed by a rotation. The set of
all real orthogonal matrices in two dimensions is called O(2), and the subset
consisting of rotations is called SO(2).

In three dimensions we need to take some care with what we mean by
a rotation. On the one hand, we might mean that the transformation has
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some fixed axis and is a rotation through some angle about that axis. Let
us call that a rotation about an axis. On the other hand, we might mean
all transformations we can produce by a sequence of rotations about various
axes. Let us define rotation in this sense. Clearly if we consider the rotation
R which rotates the basis {ê} into the basis {ê′}, and if we have another
rotation R′ which rotates {ê′} into {ê′′}, then the transformation which first
does R and then does R′, called the composition of them, R̆ = R′◦R, is also
a rotation in this latter sense. As ê′′i =

∑
j R

′
ij ê

′
j =

∑
ij R

′
ijRjkêk, we see that

R̆ik =
∑
j R

′
ijRjk and ê′′i =

∑
k R̆ikêk. Thus the composition R̆ = R′R is given

by matrix multiplication. In two dimensions, straightforward evaluation will
verify that if R and R′ are of the form (4.4) with angles θ and θ′ respectively,
the product R̆ is of the same form with angle θ̆ = θ + θ′. Thus all rotations
are rotations about an axis there. Rotations in three dimensions are a bit
more complex, because they can take place in different directions as well as
through different angles. We can still represent the composition of rotations
with matrix multiplication, now of 3×3 matrices. In general, matrices do not
commute, AB 6= BA, and this is indeed reflected in the fact that the effect
of performing two rotations depends in the order in which they are done.
A graphic illustration is worth trying. Let V be the process of rotating an
object through 90◦ about the vertical z-axis, and H be a rotation through 90◦

about the x-axis, which goes goes off to our right. If we start with the book
lying face up facing us on the table, and first apply V and then H, we wind
up with the binding down and the front of the book facing us. If, however,
we start from the same position but apply first H and then V , we wind up
with the book standing upright on the table with the binding towards us.
Clearly the operations H and V do not commute.

It is clear that any composition of rotations must be orthogonal, as any
set of orthonormal basis vectors will remain orthonormal under each trans-
formation. It is also clear that there is a three dimensional version of P , say
ê′1 = ê1, ê

′
2 = ê2, ê

′
3 = −ê3, which is orthogonal but not a composition of

rotations, for it changes a right-handed coordinate system (with ê1× ê2 = ê3)
to a left handed one, while rotations preserve the handedness. It is straight-
forward to show, in any dimension N , that any composition of orthogonal
matrices is orthogonal, for if AAT = 1I and BBT = 1I and C = AB, then
CCT = AB(AB)T = ABBTAT = A 1IAT = 1I, and C is orthogonal as well.
So the rotations are a subset of the set O(N) of orthogonal matrices.
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Figure 4.1: The results of applying the two rotations H and V to a book
depends on which is done first. Thus rotations do not commute. Here we
are looking down at a book which is originally lying face up on a table. V is
a rotation about the vertical z-axis, and H is a rotation about a fixed axis
pointing to the right, each through 90◦.
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4.1.2 Groups

This set of orthogonal matrices is a group, which means that the set O(N)
satisfies the following requirements, which we state for a general set G.

A set G of elements A,B,C, ... together with a group multiplication
rule (�) for combining two of them, is a group if

• Given any two elements A and B in the group, the product A � B is
also in the group. One then says that the set G is closed under � .
In our case the group multiplication is ordinary matrix multiplication,
the group consists of all N ×N orthogonal real matrices, and we have
just shown that it is closed.

• The product rule is associative; for every A,B,C ∈ G, we have A �
(B � C) = (A� B)� C. For matrix multiplication this is simply due
to the commutivity of finite sums,

∑
i

∑
j =

∑
j

∑
i.

• There is an element e in G, called the identity, such that for every
element A ∈ G, e � A = A � e = A. In our case e is the unit matrix
1I, 1Iij = δij.

• Every element A ∈ G has an element A−1 ∈ G such that A � A−1 =
A−1�A = e. This element is called the inverse of A, and in the case of
orthogonal matrices is the inverse matrix, which always exists, because
for orthogonal matrices the inverse is the transpose, which always exists
for any matrix.

While the constraints (4.1) would permit A(t) to be any orthogonal ma-
trix, the nature of Newtonian mechanics of a rigid body requires it to vary
continuously in time. If the system starts with A = 1I, there must be a contin-
uous path in the space of orthogonal matrices to the configuration A(t) at any
later time. But the set of matrices O(3) is not connected in this fashion: there
is no path from A = 1I to A = P . To see it is true, we look at the determinant
of A. From AAT = 1I we see that det(AAT ) = 1 = det(A) det(AT ) = (detA)2

so detA = ±1 for all orthogonal matrices A. But the determinant varies con-
tinuously as the matrix does, so no continuous variation of the matrix can
lead to a jump in its determinant. Thus the matrices which represent rota-
tions have unit determinant, detA = +1, and are called unimodular.

The set of all unimodular orthogonal matrices in N dimensions is called
SO(N). It is a subset of O(N), the set of all orthogonal matrices in N
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dimensions. Clearly all rotations are in this subset. The subset is closed
under multiplication, and the identity and the inverses of elements in SO(N)
are also in SO(N), for their determinants are clearly 1. Thus SO(N) is a
subgroup of O(N). It is actually the set of rotations, but we shall prove
this statement only for the case N = 3, which is the immediately relevant
one. Simultaneously we will show that every rotation in three dimensions is
a rotation about an axis. We have already proven it for N = 2. We now
show that every A ∈ SO(3) has one vector it leaves unchanged or invariant,
so that it is effectively a rotation in the plane perpendicular to this direction,
or in other words a rotation about the axis it leaves invariant. The fact that
every unimodular orthogonal matrix in three dimensions is a rotation about
an axis is known as Euler’s Theorem. To show that it is true, we note that
if A is orthogonal and has determinant 1,

det
{
(A− 1I)AT

}
= det(1I− AT ) = det(1I− A)

= det(A− 1I) det(A) = det(−(1I− A)) = (−1)3 det(1I− A)

= − det(1I− A),

so det(1I−A) = 0 and 1I−A is a singular matrix. Then there exists a vector
~ω which is annihilated by it, (1I − A)~ω = 0, or A~ω = ~ω, and ~ω is invariant
under A. Of course this determines only the direction of ~ω, and only up
to sign. If we choose a new coordinate system in which the z̃-axis points
along ~ω, we see that the elements Ãi3 = (0, 0, 1), and orthogonality gives∑
Ã2

3j = 1 = Ã2
33 so Ã31 = Ã32 = 0. Thus Ã is of the form

Ã =

 (B )
0
0

0 0 1


where B is an orthogonal unimodular 2 × 2 matrix, which is therefore a
rotation about the z-axis through some angle ω, which we may choose to be
in the range ω ∈ (−π, π]. It is natural to define the vector ~ω, whose direction
only was determined above, to be ~ω = ωêz̃. Thus we see that the set of
orthogonal unimodular matrices is the set of rotations, and elements of this
set may be specified by a vector2 of length ≤ π.

2More precisely, we choose ~ω along one of the two opposite directions left invariant by
A, so that the the angle of rotation is non-negative and ≤ π. This specifies a point in or on
the surface of a three dimensional ball of radius π, but in the case when the angle is exactly
π the two diametrically opposed points both describe the same rotation. Mathematicians
say that the space of SO(3) is three-dimensional real projective space P3(R)[4].
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Thus we see that the rotation which determines the orientation of a rigid
body can be described by the three degrees of freedom ~ω. Together with
the translational coordinates R̃, this parameterizes the configuration space
of the rigid body, which is six dimensional. It is important to recognize that
this is not motion in a flat six dimensional configuration space, however. For
example, the configurations with ~ω = (0, 0, π − ε) and ~ω = (0, 0,−π + ε)
approach each other as ε → 0, so that motion need not even be continuous
in ~ω. The composition of rotations is by multiplication of the matrices, not
by addition of the ~ω’s. There are other ways of describing the configuration
space, two of which are known as Euler angles and Cayley-Klein parameters,
but none of these make describing the space very intuitive. For some purposes
we do not need all of the complications involved in describing finite rotations,
but only what is necessary to describe infinitesimal changes between the
configuration at time t and at time t+∆t. We will discuss these applications
first. Later, when we do need to discuss the configuration in section 4.4.2,
we will define Euler angles.

4.2 Kinematics in a rotating coordinate sys-

tem

We have seen that the rotations form a group. Let us describe the configu-
ration of the body coordinate system by the position R̃(t) of a given point
and the rotation matrix A(t) : êi → ê′i which transforms the canonical fixed
basis (inertial frame) into the body basis. A given particle of the body is
fixed in the body coordinates, but this, of course, is not an inertial coordinate
system, but a rotating and possibly accelerating one. We need to discuss the
transformation of kinematics between these two frames. While our current
interest is in rigid bodies, we will first derive a general formula for rotating
(and accelerating) coordinate systems.

Suppose a particle has coordinates~b(t) =
∑
i b
′
i(t)ê

′
i(t) in the body system.

We are not assuming at the moment that the particle is part of the rigid
body, in which case the b′i(t) would be independent of time. In the inertial

coordinates the particle has its position given by ~r(t) = R̃(t) +~b(t), but the

coordinates of ~b(t) are different in the space and body coordinates. Thus

ri(t) = R̃i(t) + bi(t) = R̃i(t) +
∑
j

(
A−1(t)

)
ij
b′j(t).
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The velocity is ~v =
∑
i ṙiêi, because the êi are inertial and therefore consid-

ered stationary, so

~v = ˙̃R +
∑
ij

( d
dt
A−1(t)

)
ij

b′j(t) +
(
A−1(t)

)
ij

db′j(t)
dt

 êi,
and not ˙̃R+

∑
i(db

′
i/dt)ê

′
i, because the ê′i are themselves changing with time.

We might define a “body time derivative”

(
~̇b
)
b
:=

(
d

dt
~b

)
b

:=
∑
i

(
db′i
dt

)
ê′i,

but it is not the velocity of the particle α, even with respect to R̃(t), in the
sense that physically a vector is basis independent, and its derivative requires
a notion of which basis vectors are considered time independent (inertial) and
which are not. Converting the inertial evaluation to the body frame requires

the velocity to include the dA−1/dt term as well as the
(
~̇b
)
b

term.

What is the meaning of this extra term

V =
∑
ij

(
d

dt
A−1(t)

)
ij

b′j(t)êi ?

The derivative is, of course,

V = lim
∆t→0

1

∆t

∑
ij

[
A−1(t+ ∆t)ij − A−1(t)ij

]
b′j(t)êi.

This expression has coordinates in the body frame with basis vectors from
the inertial frame. It is better to describe it in terms of the body coordinates
and body basis vectors by inserting êi =

∑
k(A

−1(t)ikê
′
k(t) =

∑
k Aki(t)ê

′
k(t).

Then we have

V =
∑
kj

ê′k lim
∆t→0

1

∆t

[
A(t)A−1(t+ ∆t)− A(t)A−1(t)

]
kj
b′j(t).

The second term is easy enough to understand, as A(t)A−1(t) = 1I, so the

full second term is just ~b expressed in the body frame. The interpretation of
the first term is suggested by its matrix form: A−1(t + ∆t) maps the body
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basis at t + ∆t to the inertial frame, and A(t) maps this to the body basis
at t. So together this is the infinitesimal rotation ê′i(t + ∆t) → ê′i(t). This
transformation must be close to an identity, as ∆t→ 0. Let us expand it:

B := A(t)A−1(t+ ∆t) = 1I− Ω′∆t+O(∆t)2. (4.5)

Here Ω′ is a matrix which has fixed (finite) elements as ∆t → 0, and is
called the generator of the rotation. Note B−1 = 1I + Ω′∆t to the order we
are working, while the transpose BT = 1I−Ω′T∆t, so because we know B is
orthogonal we must have that Ω′ is antisymmetric, Ω′ = −Ω′T , Ω′

ij = −Ω′
ji.

Subtracting 1I from both sides of (4.5) and taking the limit shows that
the matrix

Ω′(t) = −A(t) · d
dt
A−1(t) =

(
d

dt
A(t)

)
· A−1(t),

where the latter equality follows from differentiating A · A−1 = 1I. The
antisymmetric 3 × 3 real matrix Ω′ is determined by the three off-diagonal
elements above the diagonal, Ω′

23 = ω′1, Ω′
13 = −ω′2, Ω′

12 = ω′3. as the
others are given by antisymmetry. Thus it is effectively a vector. It is very
useful to express this relationship by defining the Levi-Civita symbol εijk,
a totally antisymmetric rank 3 tensor specified by ε123 = 1. Then the above
expressions are given by Ω′

ij =
∑
k εijkω

′
k, and we also have

1

2

∑
ij

εkijΩ
′
ij =

1

2

∑
ij`

εkijεij`ω
′
` = ω′k,

because, as explored in Appendix A.1,

εkij = εijk,
∑
i

εijkεipq = δjpδkq − δjqδkp, so
∑
ij

εijkεij` = 2δk`.

Thus ω′k and Ω′
ij are essentially the same thing.

We have still not answered the question, “what is V?”

V =
∑
kj

ê′k lim
∆t→0

1

∆t
[B − 1I]kj b

′
j = −∑

kj

ê′kΩ
′
kjb

′
j = −∑

kj`

ê′kεkj`ω
′
`b
′
j

= ~ω ×~b,
where ~ω =

∑
` ω

′
`ê
′
`. Note we have used Eq. A.4 for the cross-product. Thus

we have shown that

~v = ˙̃R + ~ω ×~b+ (~̇b)b, (4.6)
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and the second term, coming from V , represents the motion due to the ro-
tating coordinate system.

When differentiating a true vector, which is independent of the origin
of the coordinate system, rather than a position, the first term in (4.6) is

absent, so in general for a vector ~C,

d

dt
~C =

d~C
dt


b

+ ω × ~C. (4.7)

The velocity ~v is a vector, as are ˙̃R and~b, the latter because it is the difference
of two positions. The angular velocity ~ω is also a vector3, and its derivative
is particularly simple, because

~̇ω =
d

dt
~ω =

(
d~ω

dt

)
b

+ ~ω × ~ω =

(
d~ω

dt

)
b

. (4.8)

Another way to understand (4.7) is as a simple application of Leibnitz’

rule to ~C =
∑
C ′iê

′
i, noting that

d

dt
ê′i(t) =

∑
j

d

dt
Aij(t)êj =

∑
j

(Ω′A)ij êj =
∑
k

Ω′
ikê

′
k,

which means that the second term from Leibnitz is∑
C ′i

d

dt
ê′i(t) =

∑
ik

C ′iΩ
′
ikê

′
k =

∑
ijk

C ′iεikjω
′
j ê
′
k = ~ω × ~C,

as given in (4.7). This shows that even the peculiar object (~̇b)b obeys (4.7).
Applying this to the velocity itself (4.6), we find the acceleration

~a =
d

dt
~v =

d

dt
˙̃R +

dω

dt
×~b+ ω × d

dt
~b+

d

dt
(~̇b)b

= ¨̃R + ~̇ω ×~b+ ω ×
d~b

dt


b

+ ~ω ×~b
+

d2~b

dt2


b

+ ω ×
d~b
dt


b

= ¨̃R +

d2~b

dt2


b

+ 2ω ×
d~b
dt


b

+ ~̇ω ×~b+ ~ω ×
(
ω ×~b

)
.

3Actually ~ω is a pseudovector, which behaves like a vector under rotations but changes
sign compared to what a vector does under reflection in a mirror.
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This is a general relation between any orthonormal coordinate system and
an inertial one, and in general can be used to describe physics in noninertial
coordinates, regardless of whether that coordinate system is imbedded in a
rigid body. The full force on the particle is ~F = m~a, but if we use ~r, ~v ′, and
~a ′ to represent ~b, (d~b/dt)b and (d2~b/dt2)b respectively, we have an expression
for the apparent force

m~a ′ = ~F −m ¨̃R− 2m~ω ×~v ′ −m~̇ω × ~r −m~ω × (~ω × ~r).

The additions to the real force are the pseudoforce for an accelerating refer-

ence frame −m ¨̃R, the Coriolus force −2m~ω×~v ′, an unnamed force involving
the angular acceleration of the coordinate system −m~̇ω×~r, and the centrifu-
gal force −m~ω × (~ω × ~r) respectively.

4.3 The moment of inertia tensor

Let us return to a rigid body, where the particles are constrained to keep
the distances between them constant. Then the coordinates b′αi in the body
frame are independant of time, and

~vα = ˙̃R + ω ×~bα
so the individual momenta and the total momentum are

~pα = mαṼ +mα~ω ×~bα
~P = MṼ + ~ω ×∑

α

mα
~bα

= MṼ +M~ω × ~B

where ~B is the center of mass position relative to the marked point R̃.

4.3.1 Motion about a fixed point

Angular Momentum

We next evaluate the total angular momentum, ~L =
∑
α ~rα × pα. We will

first consider the special case in which the body is rotating about the origin,
so R̃ ≡ 0, and then we will return to the general case. As ~pα = mα~ω ×~bα
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already involves a cross product, we will find a triple product, and will use
the reduction formula4

~A×
(
~B × ~C

)
= ~B

(
~A · ~C

)
− ~C

(
~A · ~B

)
.

Thus

~L =
∑
α

mα
~bα ×

(
~ω ×~bα

)
(4.9)

= ~ω
∑
α

mα
~b 2
α −

∑
α

mα
~bα
(
~bα · ~ω

)
. (4.10)

We see that, in general, ~L need not be parallel to the angular velocity ~ω, but it
is always linear in ~ω. Thus it is possible to generalize the equation ~L = I~ω of
elementary physics courses, but we need to generalize I from a multiplicative
number to a linear operator which maps vectors into vectors, not necessarily
in the same direction. In component language this linear operation is clearly
in the form Li =

∑
j Iijωj, so I is a 3× 3 matrix. Rewriting (4.10), we have

Li = ωi
∑
α

mα
~b 2
α −

∑
α

mαbαi
(
~bα · ~ω

)
.

=
∑
j

∑
α

mα

(
~b 2
αδij − bαibαj

)
ωj

≡ ∑
j

Iijωj,

where
Iij =

∑
α

mα

(
~b 2
αδij − bαibαj

)
(4.11)

is the inertia tensor about the fixed point R̃. In matrix form, we now have
(4.10) as

~L = I · ~ω, (4.12)

where I · ~ω means a vector with components (I · ~ω)i =
∑
j Iijωj.

If we consider the rigid body in the continuum limit, the sum over particles
becomes an integral over space times the density of matter,

Iij =
∫
d3b ρ(~b)

(
~b 2δij − bibj

)
. (4.13)

4This formula is colloquially known as the bac-cab formula. It is proven in Appendix
A.1.
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Kinetic energy

For a body rotating about the origin

T =
1

2

∑
α

mα~v
2
α =

1

2

∑
α

mα

(
~ω ×~bα

)
·
(
~ω ×~bα

)
.

From the general 3-dimensional identity5(
~A× ~B

)
·
(
~C × ~D

)
= ~A · ~C ~B · ~D − ~A · ~D ~B · ~C,

we have

T =
1

2

∑
α

mα

[
~ω 2~b 2

α −
(
~ω ·~bα

)2
]

=
1

2

∑
ij

ωiωj
∑
α

mα

(
~b 2
αδij −~bαi~bαj

)
=

1

2

∑
ij

ωiIijωj. (4.14)

or

T =
1

2
~ω · I · ~ω.

Noting that
∑
j Iijωj = Li, T = 1

2
~ω · ~L for a rigid body rotating about the

origin, with ~L measured from that origin.

4.3.2 More General Motion

When the marked point R̃ is not fixed in space, there is nothing special about
it, and we might ask whether it would be better to evaluate the moment of
inertia about some other point. Working in the body-fixed coordinates, we
may consider a given point ~b and evaluate the moment of inertia about that
point, rather than about the origin. This means ~bα is replaced by ~bα −~b, so

I
(~b )
ij =

∑
α

mα

[(
~bα −~b

)2
δij − (bαi − bi) (bαj − bj)

]
= I

(0)
ij +M

[(
−2~b · ~B + b2

)
δij +Bibj + biBj − bibj

]
, (4.15)

where we recall that ~B is the position of the center of mass with respect to R̃,
the origin of the body fixed coordinates6. Subtracting the moment of inertia

5See Appendix A for a hint on how to derive this.
6I(0) is evaluated about the body-fixed position ~b = 0, or about R̃, so it is given by Eq.

4.11.
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about the center of mass, given by (4.15) with b→ B, we have

I
(~b )
ij − I

( ~B )
ij = M

[(
−2~b · ~B + b2 +B2

)
δij +Bibj + biBj − bibj −BiBj

]
= M

[(
~b− ~B

)2
δij − (bi −Bi) (bj −Bj)

]
. (4.16)

Note the difference is independent of the origin of the coordinate system,
depending only on the vector b̆ = ~b− ~B.

A possible axis of rotation can be specified by a point ~b through which
it passes, together with a unit vector n̂ in the direction of the axis7. The

moment of inertia about the axis (~b, n̂) is defined as n̂·I(~b )·n̂. If we compare
this to the moment about a parallel axis through the center of mass, we see
that

n̂ · I(~b ) · n̂− n̂ · I(cm) · n̂ = M
[
b̆2n̂2 − (b̆ · n̂)2

]
= M(n̂× b̆)2 = Mb̆2⊥, (4.17)

where b̆⊥ is the projection of the vector, from the center of mass to ~b, onto
the plane perpendicular to the axis. Thus the moment of inertia about any
axis is the moment of inertia about a parallel axis through the center of
mass, plus M`2, where ` = b̆⊥ is the distance between these two axes. This
is known as the parallel axis theorem.

The general motion of a rigid body involves both a rotation and a trans-
lation of a given point R̃. Then

~rα = R̃ +~bα, ~̇rα = Ṽ + ~ω ×~bα, (4.18)

where Ṽ and ~ω may be functions of time, but they are the same for all
particles α. Then the angular momentum about the origin is

~L =
∑
α

mα~rα × ~̇rα =
∑
α

mα~rα × Ṽ +
∑
α

mα

(
R̃ +~bα

)
×
(
~ω ×~bα

)
= M ~R× Ṽ + I(0) · ~ω +MR̃× (~ω × ~B), (4.19)

where the inertia tensor I(0) is still measured8 about R̃, even though that is
not a fixed point. Recall that ~R is the laboratory position of the center of

7Actually, this gives more information than is needed to specify an axis, as ~b and ~b ′

specify the same axis if ~b−~b ′ ∝ n̂. In the expression for the moment of inertia about the
axis, (4.17), we see that the component of ~b parallel to n̂ does not affect the result.

8 Recall the (~b) superscript in (4.15) refers to the body-fixed coordinate, so I(0) is about
~b = 0, not about the origin in inertial coordinates.
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mass, while ~B is its position in the body-fixed system. The kinetic energy is
now

T =
∑
α

1

2
mα~̇r

2

α =
1

2

∑
α

mα

(
Ṽ + ~ω ×~bα

)
·
(
Ṽ + ~ω ×~bα

)
=

1

2

∑
α

mαṼ
2 + Ṽ ·

(
~ω ×∑

α

mα
~bα

)
+

1

2

∑
α

mα

(
~ω ×~bα

)2

=
1

2
MṼ 2 +MṼ ·

(
~ω × ~B

)
+

1

2
~ω · I(0) · ~ω (4.20)

and again the inertia tensor I(0) is calculated about the arbitrary point R̃.
We will see that it makes more sense to use the center of mass.

Simplification Using the Center of Mass

As each ~̇rα = Ṽ + ~ω ×~bα, the center of mass velocity is given by

M~V =
∑
α

mα~̇rα =
∑
α

mα

(
Ṽ + ~ω ×~bα

)
= M

(
Ṽ + ~ω × ~B

)
, (4.21)

so 1
2
M~V 2 = 1

2
MṼ 2 +MṼ · (~ω × ~B) + 1

2
M(ω × ~B)2. Comparing with 4.20,

we see that

T =
1

2
M~V 2 − 1

2
M(~ω × ~B)2 +

1

2
~ω · I(0) · ~ω.

The last two terms can be written in terms of the inertia tensor about the
center of mass. From 4.16 with ~b = 0, as ~B is the center of mass,

I
(cm)
ij = I

(0)
ij −MB2δij +MBiBj.

Using the formula for
(
~A× ~B

)
·
(
~C × ~D

)
again,

T =
1

2
M~V 2 − 1

2
M
[
~ω2 ~B2 −

(
~ω · ~B

)2
]

+
1

2
~ω · I(0) · ~ω

=
1

2
M~V 2 +

1

2
~ω · I(cm) · ~ω. (4.22)

A similar expression holds for the angular momentum. Inserting Ṽ = ~V −
~ω × ~B into (4.19),

~L = M ~R×
[
~V − ~ω × ~B

]
+ I(0) · ~ω +MR̃× (~ω × ~B)
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= M ~R× ~V −M(~R− R̃)× (~ω × ~B) + I(0) · ~ω
= M ~R× ~V −M ~B × (~ω × ~B) + I(0) · ~ω
= M ~R× ~V −M~ωB2 +M ~B ~ω · ~B + I(0) · ~ω
= M ~R× ~V + I(cm) · ~ω. (4.23)

These two decompositions, (4.22) and (4.23), have a reasonable interpre-
tation: the total angular momentum is the angular momentum about the
center of mass, plus the angular momentum that a point particle of mass
M and position ~R(t) would have. Similiarly, the total kinetic energy is the
rotational kinetic energy of the body rotating about its center of mass, plus
the kinetic energy of the fictious point particle moving with the center of
mass.

Note that if we go back to the situation where the marked point R̃ is
stationary at the origin of the lab coordinates, Ṽ = 0, ~L = I · ~ω, T =
1
2
~ω · I · ~ω = 1

2
~ω · ~L.

The angular momentum in Eqs. 4.19 and 4.23 is the angular momentum
measured about the origin of the lab coordinates, ~L =

∑
αmα~rα × vα. It is

useful to consider the angular momentum as measured about the center of
mass,

~L cm =
∑
α

mα

(
~rα − ~R

)
×
(
~vα − ~V

)
= ~L−M ~R× ~V , (4.24)

so we see that the angular momentum, measured about the center of mass,
is just I(cm) · ~ω.

The parallel axis theorem is also of the form of a decomposition. The
inertia tensor about a given point ~r given by (4.16) is

I
(r)
ij = I

(cm)
ij +M

[(
~r − ~R

)2
δij − (ri −Ri) (rj −Rj)

]
.

This is, once again, the sum of the quantity, here the inertia tensor, of the
body about the center of mass, plus the value a particle of mass M at the
center of mass ~R would have, evaluated about ~r.

There is another theorem about moments of inertia, though much less
general — it only applies to a planar object — let’s say in the xy plane, so
that zα ≈ 0 for all the particles constituting the body. As

Izz =
∑
α

mα

(
x2
α + y2

α

)
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Ixx =
∑
α

mα

(
y2
α + z2

α

)
=
∑
α

mαy
2
α

Iyy =
∑
α

mα

(
x2
α + z2

α

)
=
∑
α

mαx
2
α,

we see that Izz = Ixx+Iyy, the moment of inertia about an axis perpendicular
to the body is the sum of the moments about two perpendicular axes within
the body, through the same point. This is known as the perpendicular
axis theorem. As an example of its usefulness we calculate the moments

for a thin uniform ring lying on the circle x2 + y2 = R2,
z = 0, about the origin. As every particle of the ring has
the same distance R from the z-axis, the moment of inertia
Izz is simply MR2. As Ixx = Iyy by symmetry, and as
the two must add up to Izz, we have, by a simple indirect
calculation, Ixx = 1

2
MR2.

x

y

The parallel axis theorem (4.17) is also a useful calculational tool. Con-
sider the moment of inertia of the ring about an axis parallel to its axis of
symmetry but through a point on the ring. About the axis of
symmetry, Izz = MR2, and b⊥ = R, so about a point on the
ring, Izz = 2MR2. If instead, we want the moment about a
tangent to the ring in the x direction, Ixx = I(cm)

xx +MR2 =
1
2
MR2 +MR2 = 3MR2/2. Of course for Iyy the b⊥ = 0, so
Iyy = 1

2
MR2, and we may verify that Izz = Ixx + Iyy about

this point as well.

y

x

For an object which has some thickness, with non-zero z components, the
perpendicular axis theorem becomes an inequality, Izz ≤ Ixx + Iyy.

Principal axes

If an object has an axial symmetry about z, we may use cylindrical polar
coordinates (ρ, θ, z). Then its density µ(ρ, θ, z) must be independent of θ,
and

Iij =
∫
dz ρ dρ dθ µ(ρ, z)

[
(ρ2 + z2)δij − rirj

]
,

so Ixz =
∫
dz ρ dρ dθ µ(ρ, z)(−zρ cos θ) = 0

Ixy =
∫
dz ρ dρ dθ µ(ρ, z)(ρ2 sin θ cos θ) = 0
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Ixx =
∫
dz ρ dρ dθ µ(ρ, z)

[
(ρ2 + z2 − ρ2 cos2 θ

]
Iyy =

∫
dz ρ dρ dθ µ(ρ, z)

[
(ρ2 + z2 − ρ2 sin2 θ

]
= Ixx

Thus the inertia tensor is diagonal and has two equal elements,

I =

 Ixx 0 0
0 Ixx 0
0 0 Izz

 .
In general, an object need not have an axis of symmetry, and even a

diagonal inertia tensor need not have two equal “eigenvalues”. Even if a
body has no symmetry, however, there is always a choice of axes, a coordinate
system, such that in this system the inertia tensor is diagonal. This is because
Iij is always a real symmetric tensor, and any such tensor can be brought to
diagonal form by an orthogonal similiarity transformation9

I = OIDO−1, ID =

 I1 0 0
0 I2 0
0 0 I3

 (4.25)

An orthogonal matrix O is either a rotation or a rotation times P , and the
P ’s can be commuted through ID without changing its form, so there is a
rotation R which brings the inertia tensor into diagonal form. The axes of
this new coordinate system are known as the principal axes.

Tire balancing

Consider a rigid body rotating on an axle, and therefore about a fixed axis.

What total force and torque will the axle exert? First, ~̇R = ~ω × ~R, so

~̈R = ~̇ω × ~R + ~ω × ~̇R = ~̇ω × ~R + ~ω × (ω × ~R) = ~̇ω × ~R + ~ω(~ω · ~R) + ~Rω2.

If the axis is fixed, ~ω and ~̇ω are in the same direction, so the first term in the
last expression is perpendicular to the other two. If we want the total force

to be zero10, ~̈R = 0, so

~R · ~̈R = 0 = 0 + (~ω · ~R)2 −R2ω2.

9 This should be proven in any linear algebra course. For example, see [1], Theorem 6
in Section 6.3.

10Here we are ignoring any constant force compensating the force exerted by the road
which is holding the car up!
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Thus the angle between ~ω and ~R is 0 or π, and the center of mass must lie
on the axis of rotation. This is the condition of static balance if the axis of
rotation is horizontal in a gravitational field. Consider a car tire: to be stable
at rest at any angle, ~R must lie on the axis or there will be a gravitational
torque about the axis, causing rotation in the absense of friction. If the tire
is not statically balanced, this force will rotate rapidly with the tire, leading
to vibrations of the car.

Even if the net force is 0, there might be a torque. ~τ = ~̇L = d(I · ~ω)/dt.

If I · ~ω is not parallel to ~ω it will rotate with the wheel, and so ~̇L will rapidly
oscillate. This is also not good for your axle. If, however, ~ω is parallel to
one of the principal axes, I · ~ω is parallel to ~ω, so if ~ω is constant, so is ~L,
and ~τ = 0. The process of placing small weights around the tire to cause
one of the principal axes to be aligned with the axle is called dynamical
balancing.

Every rigid body has its principal axes; the problem of finding them
and the moments of inertia about them, given the inertia tensor I in some
coordiate system, is a mathematical question of finding a rotation R and
“eigenvalues” I1, I2, I3 (not components of a vector) such that equation 4.25

holds, with R in place of O. The vector ~v1 = R
 1

0
0

 is then an eigenvector,

for

I · ~v1 = RIDR−1R
 1

0
0

 = RID

 1
0
0

 = I1R
 1

0
0

 = I1~v1.

Similarly I ·~v2 = I2~v2 and I ·~v3 = I3~v3, where ~v2 and ~v3 are defined the same
way, starting with ê2 and ê3 instead of ê1. Note that, in general, I acts simply
as a multiplier only for multiples of these three vectors individually, and not
for sums of them. On a more general vector I will change the direction as
well as the length of the vector it acts on.

Note that the Ii are all ≥ 0, for given any vector ~n,

~n · I · ~n =
∑
α

mα[r
2
αn

2 − (~rα · ~n)2] =
∑
α

mαr
2
αn

2(1− cos2 θα) ≥ 0,

so all the eigenvalues must be ≥ 0. It will be equal to zero only if all massive
points of the body are in the ±~n directions, in which case the rigid body
must be a thin line.
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Finding the eigenvalues Ii is easier than finding the rotation R. Consider
the matrix I−λ1I, which has the same eigenvectors as I, but with eigenvalues
Ii − λ. Then if λ is one of the eigenvalues Ii, this matrix will annihilate ~vi,
so I−λ1I is a singular matrix with zero determinant. Thus the characteristic
equation det(I − λ1I) = 0, which is a cubic equation in λ, gives as its roots
the eigenvalues of I.

4.4 Dynamics

4.4.1 Euler’s Equations

So far, we have been working in an inertial coordinate system O. In compli-
cated situations this is rather unnatural; it is more natural to use a coordiate
system O′ fixed in the rigid body. In such a coordinate system, the vector
one gets by differentiating the coefficients of a vector ~b =

∑
b′iê

′
i differs from

the inertial derivative ~̇b as given in Eq. 4.7. Consider two important special
cases: either we have a system rotating about a fixed point R̃, with ~τ , ~L, and
I ′ij all evaluated about that fixed point, or we are working about the center

of mass, with ~τ , ~L, and I ′ij all evaluated about the center of mass, even if it

is in motion. In either case, we have ~L = I′ · ~ω, so for the time derivative of
the angular momentum, we have

~τ =
d~L

dt
=

d~L
dt


b

+ ~ω × ~L

=
∑
ij

d(I ′ijω
′
j)

dt
ê′i + ~ω × (I ′ · ~ω),

Now in the O′ frame, all the masses are at fixed positions, so I ′ij is constant,

and the first term is simply I · (dω/dt)b, which by (4.8) is simply I · ~̇ω. Thus
we have (in the body coordinate system)

~τ = I′ · ~̇ω + ~ω × (I′ · ω). (4.26)

We showed that there is always a choice of cartesian coordinates mounted
on the body along the principal axes. For the rest of this section we will use
this body-fixed coordinate system, so we will drop the primes.
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The torque not only determines the rate of change of the angular momen-
tum, but also does work in the system. For a system rotating about a fixed
point, we see from the expression (4.14), T = 1

2
~ω · I · ~ω, that

dT

dt
=

1

2
~̇ω · I · ~ω +

1

2
~ω · İ · ~ω +

1

2
~ω · I · ~̇ω.

The first and last terms are equal because the inertia tensor is symmetric,
Iij = Iji, and the middle term vanishes in the body-fixed coordinate system

because all particle positions are fixed. Thus dT/dt = ~ω · I · ~̇ω = ~ω · ~̇L = ~ω ·~τ .
Thus the kinetic energy changes due to the work done by the external torque.
Therefore, of course, if there is no torque the kinetic energy is constant.

We will write out explicitly the components of Eq. 4.26. In evaluating τ1,
we need the first component of the second term,

[(ω1, ω2, ω3)× (I1ω1, I2ω2, I3ω3)]1 = (I3 − I2)ω2ω3.

Inserting this and the similar expressions for the other components into
Eq. (4.26), we get Euler’s equations

τ1 = I1ω̇1 + (I3 − I2)ω2ω3,

τ2 = I2ω̇2 + (I1 − I3)ω1ω3, (4.27)

τ3 = I3ω̇3 + (I2 − I1)ω1ω2.

Using these equations we can address several situations of increasing diffi-
culty.

First, let us ask under what circumstances the angular velocity will be
fixed in the absense of a torque. As ~τ = ~̇ω = 0, from the 1-component
equation we conclude that (I2 − I3)ω2ω3 = 0. Then either the moments
are equal (I2 = I3) or one of the two components ω2 or ω3 must vanish.
Similarly, if I1 6= I2, either ω1 or ω2 vanishes. So the only way more than one
component of ~ω can be nonzero is if two or more of the principal moments
are equal. In this case, the principal axes are not uniquely determined. For
example, if I1 = I2 6= I3, the third axes is unambiguously required as one
of the principle axes, but any direction in the (12)-plane will serve as the
second principal axis. In this case we see that ~τ = ~̇ω = 0 implies either ~ω is
along the z-axis (ω1 = ω2 = 0) or it lies in the (12)-plane, (ω3 = 0). In any
case, the angular velocity is constant in the absence of torques only if it lies
along a principal axis of the body.
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As our next example, consider an axially symmetric body with no external

forces or torques acting on it. Then ~̇R is a constant, and we will choose to
work in an inertial frame where ~R is fixed at the origin. Choosing our body-
fixed coordinates with z along the axis of symmetry, our axes are principal
ones and I1 = I2, so we have

I1ω̇1 = (I1 − I3)ω2ω3,

I1ω̇2 = (I3 − I1)ω1ω3,

I3ω̇3 = (I1 − I2)ω1ω2 = 0.

We see that ω3 is a constant. Let Ω = ω3(I3 − I1)/I1. Then we see that

ω̇1 = −Ωω2, ω̇2 = Ωω1.

Differentiating the first and plugging in the second, we find

ω̈1 = −Ωω̇2 = −Ω2ω1,

which is just the harmonic oscillator equation. So ω1 = A cos(Ωt + φ) with
some arbitrary amplitude A and constant phase φ, and ω2 = −ω̇1/Ω =
A sin(Ωt + φ). We see that, in the body-fixed frame, the angular velocity
rotates about the axis of symmetry in a circle, with arbitrary radius A, and
a period 2π/Ω. The angular velocity vector ~ω is therefore sweeping out a
cone, called the body cone of precession with a half-angle φb = tan−1A/ω3.
Note the length of ~ω is fixed.

What is happening in the lab frame? The kinetic energy 1
2
~ω·~L is constant,

as is the vector ~L itself. As the length of a vector is frame independent, |~ω|
is fixed as well. Therefore the angle between them, called the lab angle, is
constant,

cosφL =
~ω · ~L
|~ω||~L| =

2T

|~ω||~L| = constant. (4.28)

Thus ~ω rotates about ~L in a cone, called the laboratory cone.
Note that φb is the angle between ~ω and the z-axis of the body, while φL

is the angle between ~ω and ~L, so they are not the same angle in two different
coordinate systems.

The situation is a bit hard to picture. In the body frame it is hard
to visualize ~ω, although that is the negative of the angular velocity of the
universe in that system. In the lab frame the body is instantanously rotating
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about the axis ~ω, but this axis is not fixed in the body. At any instant,
the points on this line are not moving, and we may think of the body rolling
without slipping on the lab cone, with ~ω the momentary line of contact. Thus
the body cone rolls on the lab cone without slipping.

The Poinsot construction

This idea has an extension to the more general case where the body has no
symmetry. The motion in this case can be quite complex, both for analytic
solution, because Euler’s equations are nonlinear, and to visualize, because
the body is rotating and bobbing around in a complicated fashion. But as
we are assuming there are no external forces or torques, the kinetic energy
and total angular momentum vectors are constant, and this will help us
understand the motion. To do so we construct an abstract object called the
inertia ellipsoid. Working in the body frame, consider that the equation

2T =
∑
ij

ωiIijωj = f(~ω)

is a quadratic equation for ~ω, with constant coefficients, which therefore
determines an ellipsoid11 in the space of possible values of ~ω. This is called
the inertia ellipsoid12. It is fixed in the body, and so if we were to scale it
by some constant to change units from angular velocity to position, we could
think of it as a fixed ellipsoid in the body itself, centered at the center of
mass. At every moment the instantanous value of ~ω must lie on this ellipsoid,
so ~ω(t) sweeps out a path on this ellipsoid called the polhode.

If we go to the lab frame, we see this ellipsoid fixed in and moving with
the body. The instantaneous value of ~ω still lies on it. In addition, the
component of ~ω in the (fixed) ~L direction is fixed, and as the center of mass

is fixed, the point corresponding to ~ω lies in a plane perpendicular to ~L a fixed
distance from the center of mass, known as the invariant plane. Finally we
note that the normal to the surface of the ellipsoid f(~ω) = 2T is parallel to

∇f = 2I · ~ω = 2~L, so the ellipsoid of inertia is tangent to the invariant plane

11We assume the body is not a thin line, so that I is a positive definite matrix (all its
eigenvalues are strictly > 0), so the surface defined by this equation is bounded.

12Exactly which quantity forms the inertia ellipsoid varies by author. Goldstein scales
~ω by a constant 1/

√
2T to form an object ρ whose ellipsoid he calls the inertia ellipsoid.

Landau and Lifshitz discuss an ellipsoid of ~L values but don’t give it a name. They then
call the corresponding path swept out by ~ω the polhode, as we do.
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at the point ~ω(t). The path that ~ω(t) sweeps out on the invariant plane is
called the herpolhode. At this particular moment, the point corresponding
to ~ω in the body is not moving, so the inertia ellipsoid is rolling, not slipping,
on the invariant plane.

In general, if there is no special symmetry, the inertia ellipsoid will not
be axially symmetric, so that in order to roll on the fixed plane and keep its
center at a fixed point, it will need to bob up and down. But in the special
case with axial symmetry, the inertia ellipsoid will also have this symmetry,
so it can roll about a circle, with its symmetry axis at a fixed angle relative
to the invariant plane. In the body frame, ω3 is fixed and the polhode moves
on a circle of radius A = ω sinφb. In the lab frame, ~ω rotates about ~L, so
it sweeps out a circle of radius ω sinφL in the invariant plane. One circle is
rolling on the other, and the polhode rotates about its circle at the rate Ω in
the body frame, so the angular rate at which the herpolhode rotates about
~L, ΩL, is

ΩL = Ω
circumference of polhode circle

circumference of herpolhode circle
=
I3 − I1
I1

ω3
sinφb
sinφL

.

Stability of rotation about an axis

We have seen that the motion of a isolated rigid body is simple only if the
angular velocity is along one of the principal axes, and can be very complex
otherwise. However, it is worth considering what happens if ~ω is very nearly,
but not exactly, along one of the principal axes, say z. Then we may write
~ω = ω3ê3 + ~ε in the body coordinates, and assume ε3 = 0 and the other
components are small. We treat Euler’s equations to first order in the small
quantity ~ε. To this order, ω̇3 = (I1− I2)ε1ε2/I3 ≈ 0, so ω3 may be considered
a constant. The other two equations give

ω̇1 = ε̇1 =
I2 − I3
I1

ε2ω3

ω̇2 = ε̇2 =
I3 − I1
I2

ε1ω3

so

ε̈1 =
I2 − I3
I1

I3 − I1
I2

ω2
3ε1.

What happens to ~ε(t) depends on the sign of the coefficient, or the sign
of (I2 − I3)(I3 − I1). If it is negative, ε1 oscillates, and indeed ~ε rotates
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about z just as we found for the symmetric top. This will be the case if
I3 is either the largest or the smallest eigenvalue. If, however, it is the
middle eigenvalue, the constant will be positive, and the equation is solved by
exponentials, one damping out and one growing. Unless the initial conditions
are perfectly fixed, the growing piece will have a nonzero coefficient and ~ε will
blow up. Thus a rotation about the intermediate principal axis is unstable,
while motion about the axes with the largest and smallest moments are
stable. For the case where two of the moments are equal, the motion will be
stable about the third, and slightly unstable (~ε will grow linearly instead of
exponentially with time) about the others.

An interesting way of understanding this stability or instability of rotation
close to a principle axes involves another ellipsoid we can define for the free
rigid body, an ellipsoid of possible angular momentum values. Of course
in the inertial coordinates ~L is constant, but in body fixed language the
coordinates vary with time, though the length of ~L is still constant. In
addition, the conservation of kinetic energy

2T = ~L · I−1 · ~L
(where I−1 is the inverse of the moment of inertia matrix) gives a quadratic

equation for the three components of ~L, just as we had for ~ω and the ellipsoid
of inertia. The path of ~L(t) on this ellipsoid is on the intersection of the

ellisoid with a sphere of radius |~L|, for the length is fixed.

If ~ω is near the principle axis with the largest moment of inertia, ~L lies
near the major axis of the ellipsoid. The sphere is nearly circumscribing the
ellipsoid, so the intersection consists only of two small loops surrounding each
end of the major axis. Similiarly if ~ω is near the smallest moment, the sphere
is nearly inscribed in the ellipsoid, and again the possible values of ~L lie close
to either end of the minor axis. Thus the subsequent motion is confined to
one of these small loops. But if ~ω starts near the intermediate principle axis,
~L does likewise, and the intersection consists of two loops which extend from
near one end to near the other of the intermediate axis, and the possible
continuous motion of ~L is not confined to a small region of the ellipsoid.

Because the rotation of the Earth flattens the poles, the Earth is approx-
imately an oblate ellipsoid, with I3 greater than I1 = I2 by about one part
in 300. As ω3 is 2π per siderial day, if ~ω is not perfectly aligned with the
axis, it will precess about the symmetry axis once every 10 months. This
Chandler wobble is not of much significance, however, because the body
angle φb ≈ 10−6.
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4.4.2 Euler angles

Up to this point we have managed to describe the motion of a rigid body
without specifying its coordinates. This is not possible for most problems
with external forces, for which the torque will generally depend on the ori-
entation of the body. It is time to face up to the problem of using three
generalized coordinates to describe the orientation.

In section 4.1.1 we described the orientation of a rigid body in terms of a
rotation through a finite angle in a given direction, specified by ω. This does
not give a simple parameterization of the matrix A, and it is more common
to use an alternate description known as Euler angles. Here we describe
the rotation A as a composition of three simpler rotations about specified
coordinates, so that we are making a sequence of changes of coordinates

(x, y, z)
Rz(φ)−→ (x1, y1, z1)

Ry1(θ)−→ (x2, y2, z2)
Rz2(ψ)−→ (x′, y′, z′).

We have chosen three specific directions about which to make the three ro-
tations, namely the original z-axis, the next y-axis, y1, and then the new
z-axis, which is both z2 and z′. This choice is not universal, but is the one
generally used in quantum mechanics. Many of the standard classical me-
chanics texts13 take the second rotation to be about the x1-axis instead of
y1, but quantum mechanics texts14 avoid this because the action of Ry on a
spinor is real, while the action of Rx is not. While this does not concern us
here, we prefer to be compatible with quantum mechanics discussions.

This procedure is pictured in Figure 4.2. To see that any rotation can
be written in this form, and to determine the range of the angles, we first
discuss what fixes the y1 axis. Notice that the rotation about the z-axis
leaves z uneffected, so z1 = z, Similiarly, the last rotation leaves the z2
axis unchanged, so it is also the z′ axis. The planes orthogonal to these
axes are also left invariant15. These planes, the xy-plane and the x′y′-plane
respectively, intersect in a line called the line of nodes16. These planes
are also the x1y1 and x2y2 planes respectively, and as the second rotation

13 See [2], [6], [9], [10], [11] and [17].
14For example [13] and [20].
15although the points in the planes are rotated by 4.4.
16The case where the xy and x′y′ are identical, rather than intersecting in a line, is

exceptional, corresponding to θ = 0 or θ = π. Then the two rotations about the z-axis
add or subtract, and many choices for the Euler angles (φ, ψ) will give the same full
rotation.
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θ

φ
ψ

’

’

’

1

Figure 4.2: The Euler angles as rotations through φ, θ, ψ, about the z, y1,
and z2 axes sequentially

Ry1(θ) must map the first into the second plane, we see that y1, which is
unaffected by Ry1 , must be along the line of nodes. We choose between the
two possible orientations of y1 to keep the necessary θ angle in [0, π]. The
angles φ and ψ are then chosen ∈ [0, 2π) as necessary to map y → y1 and
y1 → y′ respectively.

While the rotation about the z-axis leaves z uneffected, it rotates the x
and y components by the matrix (4.4). Thus in three dimensions, a rotation
about the z axis is represented by

Rz(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 . (4.29)

Similarly a rotation through an angle θ about the current y axis has a similar
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form

Ry(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (4.30)

The reader needs to assure himself, by thinking of the rotations as active
transformations, that the action of the matrix Ry after having applied Rz

produces a rotation about the y1-axis, not the original y-axis.
The full rotation A = Rz(ψ) ·Ry(θ) ·Rz(φ) can then be found simply by

matrix multiplication:

A(φ, θ, ψ) = cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


= (4.31)− sinφ sinψ + cos θ cosφ cosψ cosφ sinψ + cos θ sinφ cosψ − sin θ cosψ

− sinφ cosψ − cos θ cosφ sinψ cosφ cosψ − cos θ sinφ sinψ sin θ sinψ
sin θ cosφ sin θ sinφ cos θ

 .
We need to reexpress the kinetic energy in terms of the Euler angles and

their time derivatives. From the discussion of section 4.2, we have

Ω′ = −A(t) · d
dt
A−1(t)

The inverse matrix is simply the transpose, so finding Ω′ can be done by
straightforward differentiation and matrix multiplication17. The result is

Ω′ = (4.32) 0 ψ̇ + φ̇ cos θ −θ̇ cosψ − φ̇ sin θ sinψ
−ψ̇ − φ̇ cos θ 0 θ̇ sinψ − φ̇ sin θ cosψ

θ̇ cosψ + φ̇ sin θ sinψ −θ̇ sinψ + φ̇ sin θ cosψ 0

 .
Note Ω′ is antisymmetric as expected, so it can be recast into the axial vector
ω

ω′1 = Ω′
23 = θ̇ sinψ − φ̇ sin θ cosψ,

ω′2 = Ω′
31 = θ̇ cosψ + φ̇ sin θ sinψ, (4.33)

ω′3 = Ω′
12 = ψ̇ + φ̇ cos θ.

17Verifying the above expression for A and the following one for Ω′ is a good appli-
cation for a student having access to a good symbolic algebra computer program. Both
Mathematica and Maple handle the problem nicely.
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This expression for ~ω gives the necessary velocities for the kinetic energy
term (4.20 or 4.22) in the Lagrangian, which becomes

L =
1

2
MṼ 2 +MṼ ·

(
~ω × ~B

)
+

1

2
~ω · I(R̃) · ~ω − U(R̃, θ, ψ, φ), (4.34)

or

L =
1

2
M~V 2 +

1

2
~ω · I(cm) · ~ω − U(~R, θ, ψ, φ), (4.35)

with ~ω =
∑
i ω

′
iê
′
i given by (4.33).

4.4.3 The symmetric top

Now let us consider an example with external forces which constrain one
point of a symmetrical top to be stationary. Then we choose this to be the
fixed point, at the origin R̃ = 0, and we choose the body-fixed z′-axis to be
along the axis of symmetry. Of course the center of mass in on this axis,
so ~R = (0, 0, `) in body-fixed coordinates. We will set up the motion by
writing the Lagrangian from the forms for the kinetic and potential energy,
due entirely to the gravitational field18.

T =
1

2
(ω2

1 + ω2
2)I1 +

1

2
ω2

3I3

=
1

2

(
φ̇2 sin2 θ + θ̇2

)
I1 +

1

2

(
φ̇ cos θ + ψ̇

)2
I3, (4.36)

U = Mgzcm = Mg`
(
A−1

)
zz

= Mg` cos θ. (4.37)

So L = T − U is independent of φ, ψ, and the corresponding momenta

pφ = φ̇ sin2 θI1 +
(
φ̇ cos θ + ψ̇

)
cos θI3

= φ̇ sin2 θI1 + cos θω3I3,

pψ =
(
φ̇ cos θ + ψ̇

)
I3 = ω3I3

are constants of the motion. Let us use parameters a = pψ/I1 and b = pφ/I1,
which are more convenient, to parameterize the motion, instead of pφ, pψ, or

18As we did in discussing Euler’s equations, we drop the primes on ωi and on Iij even
though we are evaluating these components in the body fixed coordinate system. The
coordinate z, however, is still a lab coordinate, with êz pointing upward.
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even ω3, which is also a constant of the motion and might seem physically a
more natural choice. A third constant of the motion is the energy,

E = T + U =
1

2
I1
(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
ω2

3I3 +Mg` cos θ.

Solving for φ̇ from pφ = I1b = φ̇ sin2 θI1 + I1a cos θ,

φ̇ =
b− a cos θ

sin2 θ
, (4.38)

ψ̇ = ω3 − φ̇ cos θ =
I1a

I3
− b− a cos θ

sin2 θ
cos θ, (4.39)

Then E becomes

E =
1

2
I1θ̇

2 + U ′(θ) +
1

2
I3ω

2
3,

where

U ′(θ) :=
1

2
I1

(b− a cos θ)2

sin2 θ
+Mg` cos θ.

The term 1
2
I3ω

2
3 is an ignorable constant, so we consider E ′ := E − 1

2
I3ω

2
3

as the third constant of the motion, and we now have a one dimensional
problem for θ(t), with a first integral of the motion. Once we solve for θ(t),
we can plug back in to find φ̇ and ψ̇.

Substitute u = cos θ, u̇ = − sin θθ̇, so

E ′ =
I1u̇

2

2(1− u2)
+

1

2
I1

(b− au)2

1− u2
+Mg`u,

or

u̇2 = (1− u2)(α− βu)− (b− au)2 =: f(u), (4.40)

with α = 2E ′/I1, β = 2Mg`/I1.
f(u) is a cubic with a positive u3

term, and is negative at u = ±1,
where the first term vanishes, and
which are also the limits of the
physical range of values of u. If
there are to be any allowed val-
ues for u̇2, f(u) must be nonneg-
ative somewhere in u ∈ [−1, 1], so
f must look very much like what is
shown.

2

θ

θ 1

1
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To visualize what is happening, note that a point on the symmetry axis moves
on a sphere, with θ and φ representing the usual spherical coordinates, as
can be seen by examining what A−1 does to (0, 0, z′). So as θ moves back
and forth between θmin and θmax, the top is wobbling closer and further
from the vertical, called nutation. At the same time, the symmetry axis

θ′ = 52◦ θ′ = 44◦ θ′ = θmin

Figure 4.3: Possible loci for a point on the symmetry axis of the top. The
axis nutates between θmin = 50◦ and θmax = 60◦

is precessing, rotating about the vertical axis, at a rate φ̇ which is not
constant but a function of θ (Eq. 4.38). Qualitatively we may distinguish
three kinds of motion, depending on the values of φ̇ at the turning points in
θ. These in turn depend on the initial conditions and the parameters of the
top, expressed in a, b, and θmin, θmax. If the value of u′ = cos θ′ at which
φ̇ vanishes is within the range of nutation, then the precession will be in
different directions at θmin and θmax, and the motion is as in Fig. 4.3a. On
the other hand, if θ′ = cos−1(b/a) 6∈ [θmin, θmax], the precession will always
be in the same direction, although it will speed up and slow down. We then
get a motion as in Fig. 4.3b. Finally, it is possible that cos θmin = b/a, so
that the precession stops at the top, as in Fig. 4.3c. This special case is of
interest, because if the top’s axis is held still at an angle to the vertical, and
then released, this is the motion we will get.

Exercises

4.1 Prove the following properties of matrix algebra:
(a) Matrix multiplication is associative: A · (B · C) = (A ·B) · C.
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(b) (A ·B)T = BT ·AT , where AT is the transpose of A, that is (AT )ij := Aji.
(c) If A−1 and B−1 exist, (A ·B)−1 = B−1 ·A−1.
(d) The complex conjugate of a matrix (A∗)ij = A∗ij is the matrix with every
element complex conjugated. The hermitean conjugate A† is the transpose of
that, A† := (A∗)T = (AT )∗, with (A†)ij := A∗ji. Show that (A ·B)∗ = A∗ ·B∗ and
(A ·B)† = B† ·A†.

4.2 In section (4.1) we considered reexpressing a vector ~V =
∑
i Viêi in terms of

new orthogonal basis vectors. If the new vectors are ~e ′i =
∑
j Aij êj , we can also

write êi =
∑
j Aji~e

′
j , because AT = A−1 for an orthogonal transformation.

Consider now using a new basis ~e ′i which are not orthonormal. Then we must
choose which of the two above expressions to generalize. Let êi =

∑
j Aji~e

′
j , and

find the expressions for (a) ~e ′j in terms of êi; (b) V ′i in terms of Vj ; and (c) Vi in
terms of V ′j . Then show (d) that if a linear tranformation T which maps vectors
~V → ~W is given in the êi basis by a matrix Bij , in that Wi =

∑
BijVj , then

the same transformation T in the ~e ′i basis is given by C = A · B · A−1. This
transformation of matrices, B → C = A · B · A−1, for an arbitrary invertible
matrix A, is called a similarity transformation.

4.3 Two matrices B and C are called similar if there exists an invertible matrix
A such that C = A · B · A−1, and this transformation of B into C is called a
similarity transformation, as in the last problem. Show that, ifB and C are similar,
(a) TrB = TrC; (b) detB = detC; (c) B and C have the same eigenvalues; (d) If
A is orthogonal and B is symmetric (or antisymmetric), then C is symmetric (or
antisymmetric).

4.4 From the fact that AA−1 = 1 for any invertible matrix, show that if A(t) is
a differentiable matrix-valued function of time,

Ȧ A−1 = −AdA
−1

dt
.

4.5 Show that a counterclockwise rotation through an angle θ about an axis in
the direction of a unit vector n̂ passing through the origin is given by the matrix

Aij = δij cos θ + ninj(1− cos θ)− εijknk sin θ.
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4.6 Consider a rigid body in the shape of a right circular cone of height h and a
base which is a circle of radius R, made of matter with a uniform density ρ.
a) Find the position of the center of
mass. Be sure to specify with respect
to what.
b) Find the moment of inertia ten-
sor in some suitable, well specified co-
ordinate system about the center of
mass.
c) Initially the cone is spinning about
its symmetry axis, which is in the z
direction, with angular velocity ω0,
and with no external forces or torques
acting on it. At time t = 0 it is hit
with a momentary laser pulse which
imparts an impulse P in the x direc-
tion at the apex of the cone, as shown.

R

h

P

y

x

Describe the subsequent force-free motion, including, as a function of time, the
angular velocity, angular momentum, and the position of the apex, in any inertial
coordinate system you choose, provided you spell out the relation to the initial
inertial coordinate system.

4.7 We defined the general rotation as A = Rz(ψ) · Ry(θ) · Rz(φ). Work out
the full expression for A(φ, θ, ψ), and verify the last expression in (4.31). [For
this and exercise 4.8, you might want to use a computer algebra program such as
mathematica or maple, if one is available.]

4.8 Find the expression for ~ω in terms of φ, θ, ψ, φ̇, θ̇, ψ̇. [This can be done simply
with computer algebra programs. If you want to do this by hand, you might find
it easier to use the product form A = R3R2R1, and the rather simpler expressions
for RṘT . You will still need to bring the result (for R1Ṙ

T
1 , for example) through

the other rotations, which is somewhat messy.]

4.9 A diamond shaped object is shown in top, front, and side views. It is an
octahedron, with 8 triangular flat faces.
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It is made of solid aluminum of uniform
density, with a total mass M . The di-
mensions, as shown, satisfy h > b > a.
(a) Find the moment of inertia tensor
about the center of mass, clearly speci-
fying the coordinate system chosen.
(b) About which lines can a stable spin-
ning motion, with fixed ~ω, take place,
assuming no external forces act on the
body?

B A B A B A

B B

A

A

4.10 From the expression 4.40 for u = cos θ for the motion of the symmetric top,
we can derive a function for the time t(u) as an indefinite integral

t(u) =
∫ u

f−1/2(z) dz.

For values which are physically realizable, the function f has two (generically dis-
tinct) roots, uX ≤ uN in the interval u ∈ [−1, 1], and one root uU ∈ [1,∞), which
does not correspond to a physical value of θ. The integrand is then generically an
analytic function of z with square root branch points at uN , uX , uU , and ∞, which
we can represent on a cut Riemann sheet with cuts on the real axis, [−∞, uX ] and
[uN , uU ], and f(u) > 0 for u ∈ (uX , uN ). Taking t = 0 at the time the top is at
the bottom of a wobble, θ = θmax, u = uX , we can find the time at which it first
reaches another u ∈ [uX , uN ] by integrating along the real axis. But we could also
use any other path in the upper half plane, as the integral of a complex function
is independent of deformations of the path through regions where the function is
analytic.
(a) Extend this definition to a function t(u) defined for Im u ≥ 0, with u not on a
cut, and show that the image of this function is a rectangle in the complex t plane,
and identify the pre-images of the sides. Call the width T/2 and the height τ/2
(b) Extend this function to the lower half of the same Riemann sheet by allowing
contour integrals passing through [uX , uN ], and show that this extends the image
in t to the rectangle (0, T/2)× (−iτ/2, iτ/2).
(c) If the coutour passes through the cut (−∞, uX ] onto the second Riemann sheet,
the integrand has the opposite sign from what it would have at the corresponding
point of the first sheet. Show that if the path takes this path onto the second sheet
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and reaches the point u, the value t1(u) thus obtained is t1(u) = −t0(u), where
t0(u) is the value obtained in (a) or (b) for the same u on the first Riemann sheet.
(d) Show that passing to the second Riemann sheet by going through the cut
[uN , uU ] instead, produces a t2(u) = t1 + T .
(e) Show that evaluating the integral along two contours, Γ1 and Γ2, which differ
only by Γ1 circling the [uN , uU ] cut clockwise once more than Γ2 does, gives t1 =
t2 + iτ .
(f) Show that any value of t can be reached by some path, by circling the [uN , uU ]
as many times as necessary, and also by passing downwards through it and upwards
through the [−∞, uX ] cut as often as necessary (perhaps reversed).
(g) Argue that thus means the function u(t) is an analytic function from the
complex t plane into the u complex plane, analytic except at the points t = nT +
i(m+ 1

2)τ , where u(t) has double poles. Note this function is doubly periodic, with
u(t) = u(t+ nT + imτ).
(g) Show that the function is then given by u = β ℘(t − iτ/2) + c, where c is a
constant, β is the constant from (4.40), and

℘(z) =
1
z2

+
∑

m,n∈ZZ
(m,n) 6=0

(
1

(z − nT −miτ)2
− 1

(nT +miτ)2

)

is the Weierstrass’ ℘-Function.
(h) Show that ℘ satisfies the differential equation

℘′2 = 4℘3 − g2℘− g3,

where

g2 =
∑

m,n∈Z
(m,n) 6=(0,0)

(mT + inτ)−4, g3 =
∑

m,n∈Z
(m,n) 6=(0,0)

(mT + inτ)−6.

[Note that the Weierstrass function is defined more generally, using parameters
ω1 = T/2, ω2 = iτ/2, with the ω’s permitted to be arbitrary complex numbers
with differing phases.]

4.11 As a rotation about the origin maps the unit sphere into itself, one way
to describe rotations is as a subset of maps f : S2 → S2 of the (surface of the)
unit sphere into itself. Those which correspond to rotations are clearly one-to-
one, continuous, and preserve the angle between any two paths which intersect
at a point. This is called a conformal map. In addition, rotations preserve the
distances between points. In this problem we show how to describe such mappings,
and therefore give a representation for the rotations in three dimensions.

122 CHAPTER 4. RIGID BODY MOTION

(a) Let N be the north pole (0, 0, 1) of the unit sphere Σ = {(x, y, z), x2+y2+z2 =
1}. Define the map from the rest of the sphere s : Σ − {N} → R

2 given by a
stereographic projection, which maps each point on the unit sphere, other than
the north pole, into the point (u, v) in the equatorial plane (x, y, 0) by giving the
intersection with this plane of the straight line which joins the point (x, y, z) ∈ Σ
to the north pole. Find (u, v) as a function of (x, y, z), and show that the lengths
of infinitesimal paths in the vicinity of a point are scaled by a factor 1/(1 − z)
independent of direction, and therefore that the map s preserves the angles between
intersecting curves (i.e. is conformal).
(b) Show that the map f((u, v)) → (u′, v′) which results from first applying s−1,
then a rotation, and then s, is a conformal map from R

2 into R
2, except for the

pre-image of the point which gets mapped into the north pole by the rotation.
By a general theorem of complex variables, any such map is analytic, so f : u+iv →
u′ + iv′ is an analytic function except at the point ξ0 = u0 + iv0 which is mapped
to infinity, and ξ0 is a simple pole of f . Show that f(ξ) = (aξ + b)/(ξ − ξ0), for
some complex a and b. This is the set of complex Mobius transformations, which
are usually rewritten as

f(ξ) =
αξ + β

γξ + δ
,

where α, β, γ, δ are complex constants. An overall complex scale change does not
affect f , so the scale of these four complex constants is generally fixed by imposing
a normalizing condition αδ − βγ = 1.
(c) Show that composition of Mobius transformations f ′′ = f ′ ◦ f : ξ −→

f
ξ′ −→

f ′
ξ′′

is given by matrix multiplication,(
α′′ β′′

γ′′ δ′′
)

=
(
α′ β′

γ′ δ′
)
·
(
α β
γ δ

)
.

(d) Not every mapping s−1 ◦ f ◦ s is a rotation, for rotations need to preserve
distances as well. We saw that an infinitesimal distance d` on Σ is mapped by s to
a distance |dξ| = d`/(1− z). Argue that the condition that f : ξ → ξ̃ correspond
to a rotation is that d˜̀≡ (1 − z̃)|df/dξ||dξ| = d`. Express this change of scale in
terms of ξ and ξ̃ rather than z and z̃, and find the conditions on α, β, γ, δ that
insure this is true for all ξ. Together with the normalizing condition, show that this
requires the matrix for f to be a unitary matrix with determinant 1, so that the
set of rotations corresponds to the group SU(2). The matrix elements are called
Cayley-Klein parameters, and the real and imaginary parts of them are called the
Euler parameters.


