
Chapter 1

Particle Kinematics

1.1 Introduction

Classical mechanics, narrowly defined, is the investigation of the motion of
systems of particles in Euclidean three-dimensional space, under the influence
of specified force laws, with the motion’s evolution determined by Newton’s
second law, a second order differential equation. That is, given certain laws
determining physical forces, and some boundary conditions on the positions
of the particles at some particular times, the problem is to determine the po-
sitions of all the particles at all times. We will be discussing motions under
specific fundamental laws of great physical importance, such as Coulomb’s
law for the electrostatic force between charged particles. We will also dis-
cuss laws which are less fundamental, because the motion under them can be
solved explicitly, allowing them to serve as very useful models for approxima-
tions to more complicated physical situations, or as a testbed for examining
concepts in an explicitly evaluatable situation. Techniques suitable for broad
classes of force laws will also be developed.

The formalism of Newtonian classical mechanics, together with investi-
gations into the appropriate force laws, provided the basic framework for
physics from the time of Newton until the beginning of the last century. The
systems considered had a wide range of complexity. One might consider a
single particle on which the Earth’s gravity acts. But one could also con-
sider systems as the limit of an infinite number of very small particles, with
displacements smoothly varying in space, which gives rise to the continuum
limit. One example of this is the consideration of transverse waves on a
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2 CHAPTER 1. PARTICLE KINEMATICS

stretched string, in which every point on the string has an associated degree
of freedom, its transverse displacement.

The scope of classical mechanics was broadened in the 19th century, in
order to consider electromagnetism. Here the degrees of freedom were not
just the positions in space of charged particles, but also other quantities,
distributed throughout space, such as the the electric field at each point.
This expansion in the type of degrees of freedom has continued, and now in
fundamental physics one considers many degrees of freedom which correspond
to no spatial motion, but one can still discuss the classical mechanics of such
systems.

As a fundamental framework for physics, classical mechanics gave way
on several fronts to more sophisticated concepts in the early 1900’s. Most
dramatically, quantum mechanics has changed our focus from specific solu-
tions for the dynamical degrees of freedom as a function of time to the wave
function, which determines the probabilities that a system have particular
values of these degrees of freedom. Special relativity not only produced a
variation of the Galilean invariance implicit in Newton’s laws, but also is, at
a fundamental level, at odds with the basic ingredient of classical mechanics
— that one particle can exert a force on another, depending only on their
simultaneous but different positions. Finally general relativity brought out
the narrowness of the assumption that the coordinates of a particle are in a
Euclidean space, indicating instead not only that on the largest scales these
coordinates describe a curved manifold rather than a flat space, but also that
this geometry is itself a dynamical field.

Indeed, most of 20th century physics goes beyond classical Newtonian
mechanics in one way or another. As many readers of this book expect
to become physicists working at the cutting edge of physics research, and
therefore will need to go beyond classical mechanics, we begin with a few
words of justification for investing effort in understanding classical mechanics.

First of all, classical mechanics is still very useful in itself, and not just
for engineers. Consider the problems (scientific — not political) that NASA
faces if it wants to land a rocket on a planet. This requires an accuracy
of predicting the position of both planet and rocket far beyond what one
gets assuming Kepler’s laws, which is the motion one predicts by treating
the planet as a point particle influenced only by the Newtonian gravitational
field of the Sun, also treated as a point particle. NASA must consider other
effects, and either demonstrate that they are ignorable or include them into
the calculations. These include
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• multipole moments of the sun

• forces due to other planets

• effects of corrections to Newtonian gravity due to general relativity

• friction due to the solar wind and gas in the solar system

Learning how to estimate or incorporate such effects is not trivial.
Secondly, classical mechanics is not a dead field of research — in fact, in

the last few decades there has been a great deal of interest in “dynamical
systems”. Attention has shifted from calculation of the trajectory over fixed
intervals of time to questions of the long-term stability of the motion. New
ways of looking at dynamical behavior have emerged, such as chaos and
fractal systems.

Thirdly, the fundamental concepts of classical mechanics provide the con-
ceptual framework of quantum mechanics. For example, although the Hamil-
tonian and Lagrangian were developed as sophisticated techniques for per-
forming classical mechanics calculations, they provide the basic dynamical
objects of quantum mechanics and quantum field theory respectively. One
view of classical mechanics is as a steepest path approximation to the path
integral which describes quantum mechanics. This integral over paths is of
a classical quantity depending on the “action” of the motion.

So classical mechanics is worth learning well, and we might as well jump
right in.

1.2 Single Particle Kinematics

We start with the simplest kind of system, a single unconstrained particle,
free to move in three dimensional space, under the influence of a force ~F .

1.2.1 Motion in configuration space

The motion of the particle is described by a function which gives its posi-
tion as a function of time. These positions are points in Euclidean space.
Euclidean space is similar to a vector space, except that there is no special
point which is fixed as the origin. It does have a metric, that is, a notion
of distance between any two points, D(A,B). It also has the concept of a
displacement A − B from one point B in the Euclidean space to another,
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A. These displacements do form a vector space, and for a three-dimensional
Euclidean space, the vectors form a three-dimensional real vector space R

3,
which can be given an orthonormal basis such that the distance between A

and B is given by D(A,B) =
√∑3

i=1[(A−B)i]2. Because the mathematics
of vector spaces is so useful, we often convert our Euclidean space to a vector
space by choosing a particular point as the origin. Each particle’s position
is then equated to the displacement of that position from the origin, so that
it is described by a position vector ~r relative to this origin. But the origin
has no physical significance unless it has been choosen in some physically
meaningful way. In general the multiplication of a position vector by a scalar
is as meaningless physically as saying that 42nd street is three times 14th
street. The cartesian components of the vector ~r, with respect to some fixed
though arbitrary coordinate system, are called the coordinates, cartesian co-
ordinates in this case. We shall find that we often (even usually) prefer to
change to other sets of coordinates, such as polar or spherical coordinates,
but for the time being we stick to cartesian coordinates.

The motion of the particle is the function ~r(t) of time. Certainly one of
the central questions of classical mechanics is to determine, given the physical
properties of a system and some initial conditions, what the subsequent mo-
tion is. The required “physical properties” is a specification of the force, ~F .
The beginnings of modern classical mechanics was the realization early in the
17th century that the physics, or dynamics, enters into the motion (or kine-
matics) through the force and its effect on the acceleration, and not through
any direct effect of dynamics on the position or velocity of the particle.

Most likely the force will depend on the position of the particle, say for a
particle in the gravitational field of a fixed (heavy) source at the origin, for
which

~F (~r) = −GMm

r3
~r. (1.1)

But the force might also depend explicitly on time. For example, for the
motion of a spaceship near the Earth, we might assume that the force is
given by sum of the Newtonian gravitational forces of the Sun, Moon and
Earth. Each of these forces depends on the positions of the corresponding
heavenly body, which varies with time. The assumption here is that the
motion of these bodies is independent of the position of the light spaceship.
We assume someone else has already performed the nontrivial problem of
finding the positions of these bodies as functions of time. Given that, we
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can write down the force the spaceship feels at time t if it happens to be at
position ~r,

~F (~r, t) = −GmMS
~r − ~RS(t)

|r −RS(t)|3
−GmME

~r − ~RE(t)

|r −RE(t)|3

−GmMM
~r − ~RM(t)

|r −RM(t)|3 .

So there is an explicit dependence on t Finally, the force might depend on
the velocity of the particle, as for example for the Lorentz force on a charged
particle in electric and magnetic fields

~F (~r,~v, t) = q ~E(~r, t) + q ~v × ~B(~r, t). (1.2)

However the force is determined, it determines the motion of the particle
through the second order differential equation known as Newton’s Second
Law

~F (~r,~v, t) = m~a = m
d2~r

dt2
.

As this is a second order differential equation, the solution depends in general
on two arbitrary (3-vector) parameters, which we might choose to be the
initial position and velocity, ~r(0) and ~v(0).

For a given physical situation and a given set of initial conditions for
the particle, Newton’s laws determine the motion ~r(t), which is a curve in
configuration space parameterized by time t, known as the trajectory in
configuration space. If we consider the curve itself, independent of how it
depends on time, this is called the orbit of the particle. For example, the
orbit of a planet, in the approximation that it feels only the field of a fixed
sun, is an ellipse. That word does not imply any information about the time
dependence or parameterization of the curve.

1.2.2 Conserved Quantities

While we tend to think of Newtonian mechanics as centered on Newton’s
Second Law in the form ~F = m~a, he actually started with the observation
that in the absence of a force, there was uniform motion. We would now say
that under these circumstances the momentum ~p(t) is conserved, d~p/dt =
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0. In his second law, Newton stated the effect of a force as producing a rate
of change of momentum, which we would write as

~F = d~p/dt,

rather than as producing an acceleration ~F = m~a. In focusing on the con-
cept of momentum, Newton emphasized one of the fundamental quantities of
physics, useful beyond Newtonian mechanics, in both relativity and quantum
mechanics1. Only after using the classical relation of momentum to velocity,
~p = m~v, and the assumption that m is constant, do we find the familiar
~F = m~a.

One of the principal tools in understanding the motion of many systems
is isolating those quantities which do not change with time. A conserved
quantity is a function of the positions and momenta, and perhaps explicitly
of time as well, Q(~r, ~p, t), which remains unchanged when evaluated along
the actual motion, dQ(~r(t), ~p(t), t)/dt = 0. A function depending on the
positions, momenta, and time is said to be a function on extended phase
space2. When time is not included, the space is called phase space. In this
language, a conserved quantity is a function on extended phase space with
a vanishing total time derivative along any path which describes the motion
of the system.

A single particle with no forces acting on it provides a very simple exam-
ple. As Newton tells us, ~̇p = d~p/dt = ~F = 0, so the momentum is conserved.

There are three more conserved quantities ~Q(~r, ~p, t) := ~r(t)− t~p(t)/m, which

have a time rate of change d~Q/dt = ~̇r−~p/m −t~̇p/m = 0. These six indepen-
dent conserved quantities are as many as one could have for a system with
a six dimensional phase space, and they completely solve for the motion. Of
course this was a very simple system to solve. We now consider a particle
under the influence of a force.

Energy

Consider a particle under the influence of an external force ~F . In general,
the momentum will not be conserved, although if any cartesian component
of the force vanishes along the motion, that component of the momentum

1The relationship of momentum to velocity is changed in these extensions, however.
2Phase space is discussed further in section 1.4.
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will be conserved. Also the kinetic energy, defined as T = 1
2
m~v 2, will not

in general be conserved, because

dT

dt
= m~̇v · ~v = ~F · ~v.

As the particle moves from the point ~ri to the point ~rf the total change in

the kinetic energy is the work done by the force ~F ,

∆T =
∫ ~rf

~ri

~F · d~r.

If the force law ~F (~r, ~p, t) applicable to the particle is independent of time
and velocity, then the work done will not depend on how quickly the particle
moved along the path from ~ri to ~rf . If in addition the work done is inde-
pendent of the path taken between these points, so it depends only on the
endpoints, then the force is called a conservative force and we assosciate
with it potential energy

U(~r) = U(~r0) +
∫ ~r0

~r

~F (~r ′) · d~r ′,

where ~r0 is some arbitrary reference position and U(~r0) is an arbitrarily
chosen reference energy, which has no physical significance in ordinary me-
chanics. U(~r) represents the potential the force has for doing work on the
particle if the particle is at position ~r.

The condition for the path inte-
gral to be independent of the path is
that it gives the same results along
any two coterminous paths Γ1 and Γ2,
or alternatively that it give zero when
evaluated along any closed path such
as Γ = Γ1 − Γ2, the path consisting of
following Γ1 and then taking Γ2 back-
wards to the starting point. By Stokes’
Theorem, this line integral is equiva-
lent to an integral over any surface S
bounded by Γ,∮

Γ

~F · d~r =
∫
S

~∇× ~F dS.

ri

rf rf

ri

Γ

Γ

Γ2

1

Independence of path
∫
Γ1

=
∫
Γ2

is
equivalent to vanishing of the path
integral over closed paths Γ, which
is in turn equivalent to the vanishing
of the curl on the surface whose
boundary is Γ.
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Thus the requirement that the integral of ~F · d~r vanish around any closed
path is equivalent to the requirement that the curl of ~F vanish everywhere
in space.

By considering an infinitesimal path from ~r to ~r + ∆~r, we see that

U(~r + ~∆)− U(~r) = −~F ·∆~r, or

~F (r) = −~∇U(r).

The value of the concept of potential energy is that it enables finding
a conserved quantity, the total energy, in situtations in which all forces are
conservative. Then the total energy E = T + U changes at a rate

dE

dt
=
dT

dt
+
d~r

dt
· ~∇U = ~F · ~v − ~v · ~F = 0.

The total energy can also be used in systems with both conservative and non-
conservative forces, giving a quantity whose rate of change is determined by
the work done only by the nonconservative forces. One example of this use-
fulness is in the discussion of a slightly damped harmonic oscillator driven by
a periodic force near resonance. Then the amplitude of steady-state motion
is determined by a balence between the average power input by the driving
force and the average power dissipated by friction, the two nonconservative
forces in the problem, without needing to worry about the work done by the
spring.

Angular momentum

Another quantity which is often useful because it may be conserved is the an-
gular momentum. The definition requires a reference point in the Euclidean
space, say ~r0. Then a particle at position ~r with momentum ~p has an angu-
lar momentum about ~r0 given by ~L = (~r− ~r0)× ~p. Very often we take the
reference point ~r0 to be the same as the point we have chosen as the origin
in converting the Euclidian space to a vector space, so ~r0 = 0, and

~L = ~r × ~p

d~L

dt
=

d~r

dt
× ~p+ ~r × d~p

dt
=

1

m
~p× ~p+ ~r × ~F = 0 + ~τ = ~τ .

where we have defined the torque about ~r0 as τ = (~r − ~r0) × ~F in general,

and τ = ~r × ~F when our reference point ~r0 is at the origin.
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We see that if the torque ~τ(t) vanishes (at all times) the angular momen-
tum is conserved. This can happen not only if the force is zero, but also if
the force always points to the reference point. This is the case in a central
force problem such as motion of a planet about the sun.

1.3 Systems of Particles

So far we have talked about a system consisting of only a single particle,
possibly influenced by external forces. Consider now a system of n particles
with positions ~ri, i = 1, . . . , n, in flat space. The configuration of the system
then has 3n coordinates (configuration space is R

3n), and the phase space
has 6n coordinates {~ri, ~pi}.

1.3.1 External and internal forces

Let ~Fi be the total force acting on particle i. It is the sum of the forces
produced by each of the other particles and that due to any external force.
Let ~Fji be the force particle j exerts on particle i and let ~FE

i be the external
force on particle i. Using Newton’s second law on particle i, we have

~Fi = ~FE
i +

∑
j

~Fji = ~̇pi = mi~̇vi,

where mi is the mass of the i’th particle. Here we are assuming forces have
identifiable causes, which is the real meaning of Newton’s second law, and
that the causes are either individual particles or external forces. Thus we are
assuming there are no “three-body” forces which are not simply the sum of
“two-body” forces that one object exerts on another.

Define the center of mass and total mass

~R =

∑
mi~ri∑
mi

, M =
∑

mi.

Then if we define the total momentum

~P =
∑

~pi =
∑

mi~vi =
d

dt

∑
mi~ri = M

d~R

dt
,

we have
d~P

dt
= ~̇P =

∑
~̇pi =

∑
~Fi =

∑
i

~FE
i +

∑
ij

~Fji.
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Let us define ~FE =
∑
i
~FE
i to be the total external force. If Newton’s

Third Law holds,

~Fji = −~Fij, so
∑
ij

~Fij = 0, and

~̇P = ~FE. (1.3)

Thus the internal forces cancel in pairs in their effect on the total momentum,
which changes only in response to the total external force. As an obvious
but very important consequence3 the total momentum of an isolated system
is conserved.

The total angular momentum is also just a sum over the individual an-
gular momenta, so for a system of point particles,

~L =
∑

~Li =
∑

~ri × ~pi.

Its rate of change with time is

d~L

dt
= ~̇L =

∑
i

~vi × ~pi +
∑
i

~ri × ~Fi = 0 +
∑

~ri × ~FE
i +

∑
ij

~ri × ~Fji.

3There are situations and ways of describing them in which the law of action and
reaction seems not to hold. For example, a current i1 flowing through a wire segment d~s1
contributes, according to the law of Biot and Savart, a magnetic field d ~B = µ0i1d~s1 ×
~r/4π|r|3 at a point ~r away from the current element. If a current i2 flows through a
segment of wire d~s2 at that point, it feels a force

~F12 =
µ0

4π
i1i2

d~s2 × (d~s1 × ~r)
|r|3

due to element 1. On the other hand ~F21 is given by the same expression with d~s1 and
d~s2 interchanged and the sign of ~r reversed, so

~F12 + ~F21 =
µ0

4π
i1i2
|r|3 [d~s1(d~s2 · ~r)− d~s2(d~s1 · ~r)] ,

which is not generally zero.
One should not despair for the validity of momentum conservation. The Law of Biot

and Savart only holds for time-independent current distributions. Unless the currents form
closed loops, there will be a charge buildup and Coulomb forces need to be considered. If
the loops are closed, the total momentum will involve integrals over the two closed loops,
for which

∫ ∫
F12 + F21 can be shown to vanish. More generally, even the sum of the

momenta of the current elements is not the whole story, because there is momentum in
the electromagnetic field, which will be changing in the time-dependent situation.
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The total external torque is naturally defined as

~τ =
∑
i

~ri × ~FE
i ,

so we might ask if the last term vanishes due the Third Law, which permits
us to rewrite ~Fji = 1

2

(
~Fji − ~Fij

)
. Then the last term becomes

∑
ij

~ri × ~Fji =
1

2

∑
ij

~ri × ~Fji −
1

2

∑
ij

~ri × ~Fij

=
1

2

∑
ij

~ri × ~Fji −
1

2

∑
ij

~rj × ~Fji

=
1

2

∑
ij

(~ri − ~rj)× ~Fji.

This is not automatically zero, but vanishes if one assumes a stronger form
of the Third Law, namely that the action and reaction forces between two
particles acts along the line of separation of the particles. If the force law
is independent of velocity and rotationally and translationally symmetric,
there is no other direction for it to point. For spinning particles and magnetic
forces the argument is not so simple — in fact electromagnetic forces between
moving charged particles are really only correctly viewed in a context in which
the system includes not only the particles but also the fields themselves.
For such a system, in general the total energy, momentum, and angular
momentum of the particles alone will not be conserved, because the fields can
carry all of these quantities. But properly defining the energy, momentum,
and angular momentum of the electromagnetic fields, and including them in
the totals, will result in quantities conserved as a result of symmetries of the
underlying physics. This is further discussed in section 8.3.

Making the assumption that the strong form of Newton’s Third Law
holds, we have shown that

~τ =
d~L

dt
. (1.4)

The conservation laws are very useful because they permit algebraic so-
lution for part of the velocity. Taking a single particle as an example, if
E = 1

2
mv2 + U(~r) is conserved, the speed |v(t)| is determined at all times

(as a function of ~r) by one arbitrary constant E. Similarly if ~L is conserved,
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the components of ~v which are perpendicular to ~r are determined in terms
of the fixed constant ~L. With both conserved, ~v is completely determined
except for the sign of the radial component. Examples of the usefulness of
conserved quantities are everywhere, and will be particularly clear when we
consider the two body central force problem later. But first we continue our
discussion of general systems of particles.

As we mentioned earlier, the total angular momentum depends on the
point of evaluation, that is, the origin of the coordinate system used. We
now show that it consists of two contributions, the angular momentum about
the center of mass and the angular momentum of a fictitious point object
located at the center of mass. Let ~r ′i be the position of the i’th particle with

respect to the center of mass, so ~r ′i = ~ri − ~R. Then

~L =
∑
i

mi~ri × ~vi =
∑
i

mi

(
~r ′i + ~R

)
×
(
~̇r ′i + ~̇R

)
=

∑
i

mi~r
′
i × ~̇r ′i +

∑
i

mi~r
′
i × ~̇R

+~R×
∑

mi~̇r
′
i +M ~R× ~̇R

=
∑
i

~r ′i ×~p ′i + ~R× ~P .

Here we have noted that
∑
mi~r

′
i = 0, and also its derivative

∑
mi~v

′
i = 0.

We have defined ~p ′i = mi~v
′
i, the momentum in the center of mass reference

frame. The first term of the final form is the sum of the angular momenta
of the particles about their center of mass, while the second term is the
angular momentum the system would have if it were collapsed to a point at
the center of mass. Notice we did not need to assume the center of mass is
unaccelerated.

What about the total energy? The kinetic energy

T =
1

2

∑
miv

2
i =

1

2

∑
mi

(
~v ′i + ~V

)
·
(
~v ′i + ~V

)
=

1

2

∑
miv

′2
i +

1

2
MV 2, (1.5)

where ~V = ~̇R is the velocity of the center of mass. The cross term vanishes
once again, because

∑
mi~v

′
i = 0. Thus the kinetic energy of the system can

also be viewed as the sum of the kinetic energies of the constituents about
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the center of mass, plus the kinetic energy the system would have if it were
collapsed to a particle at the center of mass.

If the forces on the system are due to potentials, the total energy will
be conserved, but this includes not only the potential due to the external
forces but also that due to interparticle forces,

∑
Uij(~ri, ~rj). In general this

contribution will not be zero or even constant with time, and the internal
potential energy will need to be considered. One exception to this is the case
of a rigid body.

1.3.2 Constraints

A rigid body is defined as a system of n particles for which all the inter-
particle distances are constrained to fixed constants, |~ri − ~rj| = cij, and the
interparticle potentials are functions only of these interparticle distances. As
these distances do not vary, neither does the internal potential energy. These
interparticle forces cannot do work, and the internal potential energy may
be ignored.

The rigid body is an example of a constrained system, in which the gen-
eral 3n degrees of freedom are restricted by some forces of constraint which
place conditions on the coordinates ~ri, perhaps in conjunction with their mo-
menta. In such descriptions we do not wish to consider or specify the forces
themselves, but only their (approximate) effect. The forces are assumed to
be whatever is necessary to have that effect. It is generally assumed, as in
the case with the rigid body, that the constraint forces do no work under dis-
placements allowed by the constraints. We will consider this point in more
detail later.

If the constraints can be phrased so that they are on the coordinates
and time only, as Φi(~r1, ...~rn, t) = 0, i = 1, . . . , k, they are known as holo-
nomic constraints. These constraints determine hypersurfaces in configu-
ration space to which all motion of the system is confined. In general this
hypersurface forms a 3n − k dimensional manifold. We might describe the
configuration point on this manifold in terms of 3n − k generalized coordi-
nates, qj, j = 1, . . . , 3n− k, so that the 3n− k variables qj, together with the
k constraint conditions Φi({~ri}) = 0, determine the ~ri = ~ri(q1, . . . , q3n−k, t)
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The constrained subspace of
configuration space need not be a
flat space. Consider, for exam-
ple, a mass on one end of a rigid
light rod of length L, the other
end of which is fixed to be at the
origin ~r = 0, though the rod is
completely free to rotate. Clearly
the possible values of the carte-
sian coordinates ~r of the position
of the mass satisfy the constraint
|~r| = L, so ~r lies on the sur-
face of a sphere of radius L. We
might choose as generalized coor-
dinates the standard spherical an-
gles θ and φ. Thus the constrained
subspace is two dimensional but
not flat — rather it is the surface
of a sphere, which mathematicians
call S2. It is natural to reexpress
the dynamics in terms of θ and φ.

ϕ

x

y

z

θ
L

Generalized coordinates (θ, φ) for
a particle constrained to lie on a
sphere.
[Note: mathematics books tend
to interchange θ and φ from the
choice we use here, which is what
most physics books use.]

Note that with this constrained configuration space, we see that ideas
common in Euclidean space are no longer clear. The displacement between
two points A and B, as a three vector, cannot be added to a general point
C, and in two dimensions, a change, for example, of ∆φ is a very differnent
change in configuration depending on what θ is.

The use of generalized (non-cartesian) coordinates is not just for con-
strained systems. The motion of a particle in a central force field about the
origin, with a potential U(~r) = U(|~r|), is far more naturally described in
terms of spherical coordinates r, θ, and φ than in terms of x, y, and z.

Before we pursue a discussion of generalized coordinates, it must be
pointed out that not all constraints are holonomic. The standard example is
a disk of radius R, which rolls on a fixed horizontal plane. It is constrained
to always remain vertical, and also to roll without slipping on the plane. As
coordinates we can choose the x and y of the center of the disk, which are
also the x and y of the contact point, together with the angle a fixed line on
the disk makes with the downward direction, φ, and the angle the axis of the
disk makes with the x axis, θ.
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As the disk rolls through an
angle dφ, the point of contact
moves a distance Rdφ in a di-
rection depending on θ,

Rdφ sin θ = dx

Rdφ cos θ = dy

Dividing by dt, we get two con-
straints involving the positions
and velocities,

Φ1 := Rφ̇ sin θ − ẋ = 0

Φ2 := Rφ̇ cos θ − ẏ = 0.

The fact that these involve
velocities does not automati-
cally make them nonholonomic.
In the simpler one-dimensional
problem in which the disk is
confined to the yz plane, rolling

θ

R

x

φ y

z

A vertical disk free to roll on a plane. A
fixed line on the disk makes an angle of φ
with respect to the vertical, and the axis of
the disk makes an angle θ with the x-axis.
The long curved path is the trajectory of
the contact point. The three small paths
are alternate trajectories illustrating that
x, y, and φ can each be changed without
any net change in the other coordinates.

along x = 0 (θ = 0), we would have only the coordinates φ and y, with
the rolling constraint Rφ̇ − ẏ = 0. But this constraint can be integrated,
Rφ(t)− y(t) = c, for some constant c, so that it becomes a constraint among
just the coordinates, and is holomorphic. This cannot be done with the two-
dimensional problem. We can see that there is no constraint among the four
coordinates themselves because each of them can be changed by a motion
which leaves the others unchanged. Rotating θ without moving the other
coordinates is straightforward. By rolling the disk along each of the three
small paths shown to the right of the disk, we can change one of the variables
x, y, or φ, respectively, with no net change in the other coordinates. Thus
all values of the coordinates4 can be achieved in this fashion.

There are other, less interesting, nonholonomic constraints given by in-
equalities rather than constraint equations. A bug sliding down a bowling

4Thus the configuration space is x ∈ R, y ∈ R, θ ∈ [0, 2π) and φ ∈ [0, 2π), or, if
we allow more carefully for the continuity as θ and φ go through 2π, the more accurate
statement is that configuration space is R

2 × (S1)2, where S1 is the circumference of a
circle, θ ∈ [0, 2π], with the requirement that θ = 0 is equivalent to θ = 2π.
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ball obeys the constraint |~r| ≥ R. Such problems are solved by considering
the constraint with an equality (|~r| = R), but restricting the region of va-
lidity of the solution by an inequality on the constraint force (N ≥ 0), and
then supplementing with the unconstrained problem once the bug leaves the
surface.

In quantum field theory, anholonomic constraints which are functions of
the positions and momenta are further subdivided into first and second class
constraints à la Dirac, with the first class constraints leading to local gauge
invariance, as in Quantum Electrodynamics or Yang-Mills theory. But this
is heading far afield.

1.3.3 Generalized Coordinates for Unconstrained Sys-
tems

Before we get further into constrained systems and D’Alembert’s Principle,
we will discuss the formulation of a conservative unconstrained system in
generalized coordinates. Thus we wish to use 3n generalized coordinates qj,
which, together with time, determine all of the 3n cartesian coordinates ~ri:

~ri = ~ri(q1, ..., q3n, t).

Notice that this is a relationship between different descriptions of the same
point in configuration space, and the functions ~ri({q}, t) are independent of
the motion of any particle. We are assuming that the ~ri and the qj are each
a complete set of coordinates for the space, so the q’s are also functions of
the {~ri} and t:

qj = qj(~r1, ..., ~rn, t).

The t dependence permits there to be an explicit dependence of this relation
on time, as we would have, for example, in relating a rotating coordinate
system to an inertial cartesian one.

Let us change the cartesian coordinate notation slightly, with {xk} the
3n cartesian coordinates of the n 3-vectors ~ri, deemphasizing the division of
these coordinates into triplets.

A small change in the coordinates of a particle in configuration space,
whether an actual change over a small time interval dt or a “virtual” change
between where a particle is and where it might have been under slightly
altered circumstances, can be described by a set of δxk or by a set of δqj. If
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we are talking about a virtual change at the same time, these are related by
the chain rule

δxk =
∑
j

∂xk
∂qj

δqj, δqj =
∑
k

∂qj
∂xk

δxk, (for δt = 0). (1.6)

For the actual motion through time, or any variation where δt is not assumed
to be zero, we need the more general form,

δxk =
∑
j

∂xk
∂qj

δqj +
∂xk
∂t

δt, δqj =
∑
k

∂qj
∂xk

δxk +
∂qk
∂t

δt. (1.7)

A virtual displacement, with δt = 0, is the kind of variation we need to
find the forces described by a potential. Thus the force is

Fk = −∂U({x})
∂xk

= −
∑
j

∂U({x({q})})
∂qj

∂qj
∂xk

=
∑
j

∂qj
∂xk

Qj, (1.8)

where

Qj :=
∑
k

Fk
∂xk
∂qj

= −∂U({x({q})})
∂qj

(1.9)

is known as the generalized force. We may think of Ũ(q, t) := U(x(q), t)
as a potential in the generalized coordinates {q}. Note that if the coordinate
transformation is time-dependent, it is possible that a time-independent po-
tential U(x) will lead to a time-dependent potential Ũ(q, t), and a system
with forces described by a time-dependent potential is not conservative.

The definition of the generalized force Qj in the left part of (1.9) holds
even if the cartesian force is not described by a potential.

The qk do not necessarily have units of distance. For example, one qk
might be an angle, as in polar or spherical coordinates. The corresponding
component of the generalized force will have the units of energy and we might
consider it a torque rather than a force.

1.3.4 Kinetic energy in generalized coordinates

We have seen that, under the right circumstances, the potential energy can be
thought of as a function of the generalized coordinates qk, and the generalized
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forces Qk are given by the potential just as for ordinary cartesian coordinates
and their forces. Now we examine the kinetic energy

T =
1

2

∑
i

mi~̇ri
2

=
1

2

∑
j

mjẋ
2
j

where the 3n values mj are not really independent, as each particle has the
same mass in all three dimensions in ordinary Newtonian mechanics5. Now

ẋj = lim
∆t→0

∆xj
∆t

= lim
∆t→0

∑
k

∂xj
∂qk

∣∣∣∣∣
q,t

∆qk
∆t

+
∂xj
∂t

∣∣∣∣∣
q

,

where |q,t means that t and the q’s other than qk are held fixed. The last
term is due to the possibility that the coordinates xi(q1, ..., q3n, t) may vary
with time even for fixed values of qk. So the chain rule is giving us

ẋj =
dxj
dt

=
∑
k

∂xj
∂qk

∣∣∣∣∣
q,t

q̇k +
∂xj
∂t

∣∣∣∣∣
q

. (1.10)

Plugging this into the kinetic energy, we see that

T =
1

2

∑
j,k,`

mj
∂xj
∂qk

∂xj
∂q`

q̇kq̇` +
∑
j,k

mj
∂xj
∂qk

q̇k
∂xj
∂t

∣∣∣∣∣
q

+
1

2

∑
j

mj

 ∂xj
∂t

∣∣∣∣∣
q

2

. (1.11)

What is the interpretation of these terms? Only the first term arises if the
relation between x and q is time independent. The second and third terms
are the sources of the ~̇r · (~ω × ~r) and (~ω × ~r)2 terms in the kinetic energy
when we consider rotating coordinate systems6.

5But in an anisotropic crystal, the effective mass of a particle might in fact be different
in different directions.

6This will be fully developed in section 4.2
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Let’s work a simple example: we
will consider a two dimensional system
using polar coordinates with θ measured
from a direction rotating at angular ve-
locity ω. Thus the angle the radius vec-
tor to an arbitrary point (r, θ) makes
with the inertial x1-axis is θ + ωt, and
the relations are

x1 = r cos(θ + ωt),

x2 = r sin(θ + ωt),

with inverse relations

r =
√
x2

1 + x2
2,

θ = sin−1(x2/r)− ωt.

ω
θ
t

r

x

x1

2

Rotating polar coordinates
related to inertial cartesian
coordinates.

So ẋ1 = ṙ cos(θ + ωt) − θ̇r sin(θ + ωt) − ωr sin(θ + ωt), where the last term
is from ∂xj/∂t, and ẋ2 = ṙ sin(θ + ωt) + θ̇r cos(θ + ωt) + ωr cos(θ + ωt). In
the square, things get a bit simpler,

∑
ẋ2
i = ṙ2 + r2(ω + θ̇)2.

We see that the form of the kinetic energy in terms of the generalized co-
ordinates and their velocities is much more complicated than it is in cartesian
inertial coordinates, where it is coordinate independent, and a simple diago-
nal quadratic form in the velocities. In generalized coordinates, it is quadratic
but not homogeneous7 in the velocities, and with an arbitrary dependence on
the coordinates. In general, even if the coordinate transformation is time in-
dependent, the form of the kinetic energy is still coordinate dependent and,
while a purely quadratic form in the velocities, it is not necessarily diagonal.
In this time-independent situation, we have

T =
1

2

∑
k`

Mk`({q})q̇kq̇`, with Mk`({q}) =
∑
j

mj
∂xj
∂qk

∂xj
∂q`

, (1.12)

where Mk` is known as the mass matrix, and is always symmetric but not
necessarily diagonal or coordinate independent.

The mass matrix is independent of the ∂xj/∂t terms, and we can un-
derstand the results we just obtained for it in our two-dimensional example

7It involves quadratic and lower order terms in the velocities, not just quadratic ones.
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above,
M11 = m, M12 = M21 = 0, M22 = mr2,

by considering the case without rotation, ω = 0. We can also derive this
expression for the kinetic energy in nonrotating polar coordinates by ex-
pressing the velocity vector ~v = ṙêr + rθ̇êθ in terms of unit vectors in the
radial and tangential directions respectively. The coefficients of these unit
vectors can be understood graphically with geometric arguments. This leads
more quickly to ~v 2 = (ṙ)2 +r2(θ̇)2, T = 1

2
mṙ2 + 1

2
mr2θ̇2, and the mass matrix

follows. Similar geometric arguments are usually used to find the form of the
kinetic energy in spherical coordinates, but the formal approach of (1.12)
enables us to find the form even in situations where the geometry is difficult
to picture.

It is important to keep in mind that when we view T as a function of
coordinates and velocities, these are independent arguments evaluated at a
particular moment of time. Thus we can ask independently how T varies as
we change xi or as we change ẋi, each time holding the other variable fixed.
Thus the kinetic energy is not a function on the 3n-dimensional configuration
space, but on a larger, 6n-dimensional space8 with a point specifying both
the coordinates {qi} and the velocities {q̇i}.

1.4 Phase Space

If the trajectory of the system in configuration space, ~r(t), is known, the
velocity as a function of time, ~v(t) is also determined. As the mass of the
particle is simply a physical constant, the momentum ~p = m~v contains the
same information as the velocity. Viewed as functions of time, this gives
nothing beyond the information in the trajectory. But at any given time,
~r and ~p provide a complete set of initial conditions, while ~r alone does not.
We define phase space as the set of possible positions and momenta for
the system at some instant. Equivalently, it is the set of possible initial
conditions, or the set of possible motions obeying the equations of motion9.
For a single particle in cartesian coordinates, the six coordinates of phase

8This space is called the tangent bundle to configuration space. For cartesian coordi-
nates it is almost identical to phase space, which is in general the “cotangent bundle”
to configuration space.

9As each initial condition gives rise to a unique future development of a trajectory,
there is an isomorphism between initial conditions and allowed trajectories.
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space are the three components of ~r and the three components of ~p. At any
instant of time, the system is represented by a point in this space, called the
phase point, and that point moves with time according to the physical laws
of the system. These laws are embodied in the force function, which we now
consider as a function of ~p rather than ~v, in addition to ~r and t. We may
write these equations as

d~r

dt
=

~p

m
,

d~p

dt
= ~F (~r, ~p, t).

Note that these are first order equations, which means that the motion of
the point representing the system in phase space is completely determined10

by where the phase point is. This is to be distinguished from the trajectory
in configuration space, where in order to know the trajectory you must have
not only an initial point (position) but also its initial time derivative.

1.4.1 Dynamical Systems

We have spoken of the coordinates of phase space for a single particle as ~r and
~p, but from a mathematical point of view these together give the coordinates
of the phase point in phase space. We might describe these coordinates in
terms of a six dimensional vector ~η = (r1, r2, r3, p1, p2, p3). The physical laws
determine at each point a velocity function for the phase point as it moves
through phase space,

d~η

dt
= ~V (~η, t), (1.13)

which gives the velocity at which the phase point representing the system
moves through phase space. Only half of this velocity is the ordinary velocity,
while the other half represents the rapidity with which the momentum is
changing, i.e. the force. The path traced by the phase point as it travels
through phase space is called the phase curve.

For a system of n particles in three dimensions, the complete set of initial
conditions requires 3n spatial coordinates and 3n momenta, so phase space is
6n dimensional. While this certainly makes visualization difficult, the large

10We will assume throughout that the force function is a well defined continuous function
of its arguments.
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dimensionality is no hindrance for formal developments. Also, it is sometimes
possible to focus on particular dimensions, or to make generalizations of ideas
familiar in two and three dimensions. For example, in discussing integrable
systems (7.1), we will find that the motion of the phase point is confined
to a 3n-dimensional torus, a generalization of one and two dimensional tori,
which are circles and the surface of a donut respectively.

Thus for a system composed of a finite number of particles, the dynamics
is determined by the first order ordinary differential equation (1.13), formally
a very simple equation. All of the complication of the physical situation is
hidden in the large dimensionality of the dependent variable ~η and in the
functional dependence of the velocity function V (~η, t) on it.

There are other systems besides Newtonian mechanics which are con-
trolled by equation (1.13), with a suitable velocity function. Collectively
these are known as dynamical systems. For example, individuals of an
asexual mutually hostile species might have a fixed birth rate b and a death
rate proportional to the population, so the population would obey the logis-
tic equation11 dp/dt = bp−cp2, a dynamical system with a one-dimensional
space for its dependent variable. The populations of three competing species
could be described by eq. (1.13) with ~η in three dimensions.

The dimensionality d of ~η in (1.13) is called the order of the dynamical
system. A d’th order differential equation in one independent variable may
always be recast as a first order differential equation in d variables, so it is one
example of a d’th order dynamical system. The space of these dependent vari-
ables is called the phase space of the dynamical system. Newtonian systems
always give rise to an even-order system, because each spatial coordinate is
paired with a momentum. For n particles unconstrained inD dimensions, the
order of the dynamical system is d = 2nD. Even for constrained Newtonian
systems, there is always a pairing of coordinates and momenta, which gives
a restricting structure, called the symplectic structure12, on phase space.

If the force function does not depend explicitly on time, we say the system
is autonomous. The velocity function has no explicit dependance on time,
~V = ~V (~η), and is a time-independent vector field on phase space, which we
can indicate by arrows just as we might the electric field in ordinary space,
or the velocity field of a fluid in motion. This gives a visual indication of

11This is not to be confused with the simpler logistic map, which is a recursion relation
with the same form but with solutions displaying a very different behavior.

12This will be discussed in sections (6.3) and (6.6).
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the motion of the system’s point. For example, consider a damped harmonic
oscillator with ~F = −kx− αp, for which the velocity function is(

dx

dt
,
dp

dt

)
=
(
p

m
,−kx− αp

)
.

A plot of this field for the undamped (α = 0) and damped oscillators is

x

p

x

p

Figure 1.1: Velocity field for undamped and damped harmonic oscillators,
and one possible phase curve for each system through phase space.

shown in Figure 1.1. The velocity field is everywhere tangent to any possible
path, one of which is shown for each case. Note that qualitative features of
the motion can be seen from the velocity field without any solving of the
differential equations; it is clear that in the damped case the path of the
system must spiral in toward the origin.

The paths taken by possible physical motions through the phase space of
an autonomous system have an important property. Because the rate and
direction with which the phase point moves away from a given point of phase
space is completely determined by the velocity function at that point, if the
system ever returns to a point it must move away from that point exactly as
it did the last time. That is, if the system at time T returns to a point in
phase space that it was at at time t = 0, then its subsequent motion must be
just as it was, so ~η(T + t) = ~η(t), and the motion is periodic with period
T . This almost implies that the phase curve the object takes through phase
space must be nonintersecting13.

In the non-autonomous case, where the velocity field is time dependent,
it may be preferable to think in terms of extended phase space, a 6n + 1

13An exception can occur at an unstable equilibrium point, where the velocity function
vanishes. The motion can just end at such a point, and several possible phase curves can
terminate at that point.
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dimensional space with coordinates (~η, t). The velocity field can be extended
to this space by giving each vector a last component of 1, as dt/dt = 1. Then
the motion of the system is relentlessly upwards in this direction, though
still complex in the others. For the undamped one-dimensional harmonic
oscillator, the path is a helix in the three dimensional extended phase space.

Most of this book is devoted to finding analytic methods for exploring the
motion of a system. In several cases we will be able to find exact analytic
solutions, but it should be noted that these exactly solvable problems, while
very important, cover only a small set of real problems. It is therefore impor-
tant to have methods other than searching for analytic solutions to deal with
dynamical systems. Phase space provides one method for finding qualitative
information about the solutions. Another approach is numerical. Newton’s
Law, and more generally the equation (1.13) for a dynamical system, is a set
of ordinary differential equations for the evolution of the system’s position
in phase space. Thus it is always subject to numerical solution given an
initial configuration, at least up until such point that some singularity in the
velocity function is reached. One primitive technique which will work for all
such systems is to choose a small time interval of length ∆t, and use d~η/dt at
the beginning of each interval to approximate ∆~η during this interval. This
gives a new approximate value for ~η at the end of this interval, which may
then be taken as the beginning of the next.14

14This is a very unsophisticated method. The errors made in each step for ∆~r and ∆~p
are typically O(∆t)2. As any calculation of the evolution from time t0 to tf will involve
a number ([tf − t0]/∆t) of time steps which grows inversely to ∆t, the cumulative error
can be expected to be O(∆t). In principle therefore we can approach exact results for a
finite time evolution by taking smaller and smaller time steps, but in practise there are
other considerations, such as computer time and roundoff errors, which argue strongly in
favor of using more sophisticated numerical techniques, with errors of higher order in ∆t.
Increasingly sophisticated methods can be generated which give cumulative errors of order
O((∆t)n), for any n. A very common technique is called fourth-order Runge-Kutta, which
gives an error O((∆t)5). These methods can be found in any text on numerical methods.
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As an example, we show the
meat of a calculation for the
damped harmonic oscillator. This
same technique will work even with
a very complicated situation. One
need only add lines for all the com-
ponents of the position and mo-
mentum, and change the force law
appropriately.

This is not to say that numeri-
cal solution is a good way to solve
this problem. An analytical solu-
tion, if it can be found, is almost
always preferable, because

while (t < tf) {

dx = (p/m) * dt;

dp = -(k*x+alpha*p)*dt;

x = x + dx;

p = p + dp;

t = t + dt;

print t, x, p;

}

Integrating the motion, for a
damped harmonic oscillator.

• It is far more likely to provide insight into the qualitative features of
the motion.

• Numerical solutions must be done separately for each value of the pa-
rameters (k,m, α) and each value of the initial conditions (x0 and p0).

• Numerical solutions have subtle numerical problems in that they are
only exact as ∆t → 0, and only if the computations are done ex-
actly. Sometimes uncontrolled approximate solutions lead to surpris-
ingly large errors.

Nonetheless, numerical solutions are often the only way to handle a real prob-
lem, and there has been extensive development of techniques for efficiently
and accurately handling the problem, which is essentially one of solving a
system of first order ordinary differential equations.

1.4.2 Phase Space Flows

As we just saw, Newton’s equations for a system of particles can be cast in
the form of a set of first order ordinary differential equations in time on phase
space, with the motion in phase space described by the velocity field. This
could be more generally discussed as a d’th order dynamical system, with a
phase point representing the system in a d-dimensional phase space, moving
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with time t along the velocity field, sweeping out a path in phase space called
the phase curve. The phase point ~η(t) is also called the state of the system
at time t. Many qualitative features of the motion can be stated in terms of
the phase curve.

Fixed Points

There may be points ~ηk, known as fixed points, at which the velocity func-
tion vanishes, ~V (~ηk) = 0. This is a point of equilibrium for the system, for if
the system is at a fixed point at one moment, ~η(t0) = ~ηk, it remains at that
point. At other points, the system does not stay put, but there may be sets
of states which flow into each other, such as the elliptical orbit for the un-
damped harmonic oscillator. These are called invariant sets of states. In
a first order dynamical system15, the fixed points divide the line into intervals
which are invariant sets.

Even though a first-order system is smaller than any Newtonian system, it
is worthwhile discussing briefly the phase flow there. We have been assuming
the velocity function is a smooth function — generically its zeros will be first
order, and near the fixed point η0 we will have V (η) ≈ c(η − η0). If the
constant c < 0, dη/dt will have the opposite sign from η−η0, and the system
will flow towards the fixed point, which is therefore called stable. On the
other hand, if c > 0, the displacement η − η0 will grow with time, and the
fixed point is unstable. Of course there are other possibilities: if V (η) = cη2,
the fixed point η = 0 is stable from the left and unstable from the right. But
this kind of situation is somewhat artificial, and such a system is structually
unstable. What that means is that if the velocity field is perturbed by a
small smooth variation V (η) → V (η) + εw(η), for some bounded smooth
function w, the fixed point at η = 0 is likely to either disappear or split
into two fixed points, whereas the fixed points discussed earlier will simply
be shifted by order ε in position and will retain their stability or instability.
Thus the simple zero in the velocity function is structurally stable. Note
that structual stability is quite a different notion from stability of the fixed
point.

In this discussion of stability in first order dynamical systems, we see that
generically the stable fixed points occur where the velocity function decreases
through zero, while the unstable points are where it increases through zero.

15Note that this is not a one-dimensional Newtonian system, which is a two dimensional
~η = (x, p) dynamical system.
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Thus generically the fixed points will alternate in stability, dividing the phase
line into open intervals which are each invariant sets of states, with the points
in a given interval flowing either to the left or to the right, but never leaving
the open interval. The state never reaches the stable fixed point because the
time t =

∫
dη/V (η) ≈ (1/c)

∫
dη/(η − η0) diverges. On the other hand, in

the case V (η) = cη2, a system starting at η0 at t = 0 has a motion given by
η = (η−1

0 − ct)−1, which runs off to infinity as t → 1/η0c. Thus the solution
terminates at t = 1/η0c, and makes no sense thereafter. This form of solution
is called terminating motion.

For higher order dynamical systems, the d equations Vi(~η) = 0 required
for a fixed point will generically determine the d variables ηj, so the generic
form of the velocity field near a fixed point η0 is Vi(~η) =

∑
jMij(ηj − η0j)

with a nonsingular matrix M . The stability of the flow will be determined
by this d-dimensional square matrix M . Generically the eigenvalue equation,
a d’th order polynomial in λ, will have d distinct solutions. Because M
is a real matrix, the eigenvalues must either be real or come in complex
conjugate pairs. For the real case, whether the eigenvalue is positive or
negative determines the instability or stability of the flow along the direction
of the eigenvector. For a pair of complex conjugate eigenvalues λ = u + iv
and λ∗ = u − iv, with eigenvectors ~e and ~e ∗ respectively, we may describe
the flow in the plane δ~η = ~η − ~η0 = x(~e+ ~e ∗) + iy(~e− ~e ∗), so

~̇η = M · δ~η = x(λ~e+ λ∗~e ∗) + iy(λ~e− λ∗~e ∗)

= (ux− vy)(~e+ ~e ∗) + (vx+ uy)(~e− ~e ∗)

so (
ẋ
ẏ

)
=
(
u −v
v u

)(
x
y

)
, or

{
x = Aeut cos(vt+ φ)
y = Aeut sin(vt+ φ)

.

Thus we see that the motion spirals in towards the fixed point if u is negative,
and spirals away from the fixed point if u is positive. Stability in these
directions is determined by the sign of the real part of the eigenvalue.

In general, then, stability in each subspace around the fixed point ~η0

depends on the sign of the real part of the eigenvalue. If all the real parts
are negative, the system will flow from anywhere in some neighborhood of
~η0 towards the fixed point, so limt→∞ ~η(t) = ~η0 provided we start in that
neighborhood. Then ~η0 is an attractor and is a strongly stable fixed point.
On the other hand, if some of the eigenvalues have positive real parts, there
are unstable directions. Starting from a generic point in any neighborhood
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of ~η0, the motion will eventually flow out along an unstable direction, and
the fixed point is considered unstable, although there may be subspaces
along which the flow may be into ~η0. An example is the line x = y in the
hyperbolic fixed point case shown in Figure 1.2.

Some examples of two dimensional flows in the neighborhood of a generic
fixed point are shown in Figure 1.2. Note that none of these describe the
fixed point of the undamped harmonic oscillator of Figure 1.1. We have
discussed generic situations as if the velocity field were chosen arbitrarily
from the set of all smooth vector functions, but in fact Newtonian mechanics
imposes constraints on the velocity fields in many situations, in particular if
there are conserved quantities.

ẋ = −x+ y,

ẏ = −2x− y.

Strongly stable
spiral point.

λ = −1±
√

2i.

ẋ = −3x− y,

ẏ = −x− 3y.

Strongly stable
fixed point,

λ = −1,−2.

ẋ = 3x+ y,

ẏ = x+ 3y.

Unstable fixed
point,

λ = 1, 2.

ẋ = −x− 3y,

ẏ = −3x− y.

Hyperbolic fixed
point,

λ = −2, 1.

Figure 1.2: Four generic fixed points for a second order dynamical system.

Effect of conserved quantities on the flow

If the system has a conserved quantity Q(q, p) which is a function on phase
space only, and not of time, the flow in phase space is considerably changed.
This is because the equations Q(q, p) = K gives a set of subsurfaces or
contours in phase space, and the system is confined to stay on whichever
contour it is on initially. Unless this conserved quantity is a trivial function,
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i.e. constant, in the vicinity of a fixed point, it is not possible for all points
to flow into the fixed point, and thus it is not strongly stable.

For the case of a single particle in a potential, the total energy E =
p2/2m + U(~r) is conserved, and so the motion of the system is confined to
one surface of a given energy. As ~p/m is part of the velocity function, a
fixed point must have ~p = 0. The vanishing of the other half of the velocity
field gives ∇U(~r0) = 0, which is the condition for a stationary point of the
potential energy, and for the force to vanish. If this point is a maximum or
a saddle of U , the motion along a descending path will be unstable. If the
fixed point is a minimum of the potential, the region E(~r, ~p) < E(~r0, 0) + ε,
for sufficiently small ε, gives a neighborhood around ~η0 = (~r0, 0) to which the
motion is confined if it starts within this region. Such a fixed point is called
stable16, but it is not strongly stable, as the flow does not settle down to ~η0.
This is the situation we saw for the undamped harmonic oscillator. For that
situation F = −kx, so the potential energy may be taken to be

U(x) =
∫ 0

x
−kx dx =

1

2
kx2,

and so the total energy E = p2/2m + 1
2
kx2 is conserved. The curves of

constant E in phase space are ellipses, and each motion orbits the appropriate
ellipse, as shown in Fig. 1.1 for the undamped oscillator. This contrasts to
the case of the damped oscillator, for which there is no conserved energy, and
for which the origin is a strongly stable fixed point.

16A fixed point is stable if it is in arbitrarity small neighborhoods, each with the
property that if the system is in that neighborhood at one time, it remains in it at all later
times.
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As an example of a con-
servative system with both
stable and unstable fixed
points, consider a particle in
one dimension with a cubic
potential U(x) = ax2 − bx3,
as shown in Fig. 1.3. There
is a stable equilibrium at
xs = 0 and an unstable one
at xu = 2a/3b. Each has an
associated fixed point in phase
space, an elliptic fixed point
ηs = (xs, 0) and a hyperbolic
fixed point ηu = (xu, 0). The
velocity field in phase space
and several possible orbits
are shown. Near the stable
equilibrium, the trajectories
are approximately ellipses, as
they were for the harmonic os-
cillator, but for larger energies
they begin to feel the asym-
metry of the potential, and
the orbits become egg-shaped.

1
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x

p

1.210.80.60.40.2-0.2-0.4 0

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

x

U
U(x)

Figure 1.3. Motion in a cubic poten-

tial.

If the system has total energy precisely U(xu), the contour line crosses
itself. This contour actually consists of three separate orbits. One starts at
t→ −∞ at x = xu, completes one trip though the potential well, and returns
as t → +∞ to x = xu. The other two are orbits which go from x = xu to
x = ∞, one incoming and one outgoing. For E > U(xu), all the orbits start
and end at x = +∞. Note that generically the orbits deform continuously
as the energy varies, but at E = U(xu) this is not the case — the character
of the orbit changes as E passes through U(xu). An orbit with this critical
value of the energy is called a separatrix, as it separates regions in phase
space where the orbits have different qualitative characteristics.

Quite generally hyperbolic fixed points are at the ends of separatrices. In
our case the contour E = U(xu) consists of four invariant sets of states, one
of which is the point ηu itself, and the other three are the orbits which are
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the disconnected pieces left of the contour after removing ηu.

Exercises

1.1 (a) Find the potential energy function U(~r) for a particle in the gravita-
tional field of the Earth, for which the force law is ~F (~r) = −GMEm~r/r

3.
(b) Find the escape velocity from the Earth, that is, the minimum velocity a
particle near the surface can have for which it is possible that the particle will
eventually coast to arbitrarily large distances without being acted upon by any
force other than gravity. The Earth has a mass of 6.0 × 1024 kg and a radius of
6.4× 106 m. Newton’s gravitational constant is 6.67× 10−11N ·m2/kg2.

1.2 In the discussion of a system of particles, it is important that the particles
included in the system remain the same. There are some situations in which we
wish to focus our attention on a set of particles which changes with time, such as
a rocket ship which is emitting gas continuously. The equation of motion for such
a problem may be derived by considering an infinitesimal time interval, [t, t+ ∆t],
and choosing the system to be the rocket with the fuel still in it at time t, so that
at time t + ∆t the system consists of the rocket with its remaining fuel and also
the small amount of fuel emitted during the infinitesimal time interval.
Let M(t) be the mass of the rocket and remaining fuel at time t, assume that the
fuel is emitted with velocity ~u with respect to the rocket, and call the velocity
of the rocket ~v(t) in an inertial coordinate system. If the external force on the
rocket is ~F (t) and the external force on the infinitesimal amount of exhaust is
infinitesimal, the fact that F (t) is the rate of change of the total momentum gives
the equation of motion for the rocket.
(a) Show that this equation is

M
d~v

dt
= ~F (t) + ~u

dM

dt
.

(b) Suppose the rocket is in a constant gravitational field ~F = −Mgêz for the
period during which it is burning fuel, and that it is fired straight up with constant
exhaust velocity (~u = −uêz), starting from rest. Find v(t) in terms of t and M(t).
(c) Find the maximum fraction of the initial mass of the rocket which can escape
the Earth’s gravitational field if u = 2000m/s.

1.3 For a particle in two dimensions, we might use polar coordinates (r, θ) and
use basis unit vectors êr and êθ in the radial and tangent directions respectively to
describe more general vectors. Because this pair of unit vectors differ from point
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to point, the êr and êθ along the trajectory of a moving particle are themselves
changing with time.
(a) Show that

d

dt
êr = θ̇êθ,

d

dt
êθ = −θ̇êr.

(b) Thus show that the derivative of ~r = rêr is

~v = ṙêr + rθ̇êθ,

which verifies the discussion of Sec. (1.3.4).
(c) Show that the derivative of the velocity is

~a =
d

dt
~v = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ.

(d) Thus Newton’s Law says for the radial and tangential components of the
force are Fr = êr · F = m(r̈ − rθ̇2), Fθ = êθ · F = m(rθ̈ + 2ṙθ̇). Show that the
generalized forces are Qr = Fr and Qθ = rFθ.

1.4 Analyze the errors in the integration of Newton’s Laws in the simple Euler’s
approach described in section 1.4.1, where we approximated the change for x and p
in each time interval ∆t between ti and ti+1 by ẋ(t) ≈ ẋ(ti), ṗ(t) ≈ F (x(ti), v(ti)).
Assuming F to be differentiable, show that the error which accumulates in a finite
time interval T is of order (∆t)1.

1.5 Write a simple program to integrate the equation of the harmonic oscillator
through one period of oscillation, using Euler’s method with a step size ∆t. Do
this for several ∆t, and see whether the error accumulated in one period meets the
expectations of problem 1.4.

1.6 Describe the one dimensional phase space for the logistic equation ṗ = bp−
cp2, with b > 0, c > 0. Give the fixed points, the invariant sets of states, and
describe the flow on each of the invariant sets.

1.7 Consider a pendulum consisting of a mass at the end of a massless rod of
length L, the other end of which is fixed but free to rotate. Ignore one of the
horizontal directions, and describe the dynamics in terms of the angle θ between
the rod and the downwards direction, without making a small angle approximation.
(a) Find the generalized force Qθ and find the conserved quantity on phase space.
(b) Give a sketch of the velocity function, including all the regions of phase
space. Show all fixed points, separatrices, and describe all the invariant sets of
states. [Note: the variable θ is defined only modulo 2π, so the phase space is the
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Cartesian product of an interval of length 2π in θ with the real line for pθ. This
can be plotted on a strip, with the understanding that the left and right edges are
identified. To avoid having important points on the boundary, it would be well to
plot this with θ ∈ [−π/2, 3π/2].

1.8 Consider again the pendulum of mass m on a massless rod of length L,
with motion restricted to a fixed vertical plane, with θ, the angle made with the
downward direction, the generalized coordinate. Using the fact that the energy E
is a constant,
(a) Find dθ/dt as a function of θ.
(b) Assuming the energy is such that the mass comes to rest at θ = ±θ0, find an
integral expression for the period of the pendulum.
(c) Show that the answer is 4

√
L
gK(sin2(θ0/2), where

K(m) :=
∫ π/2

0

dφ√
1−m sin2 φ

is the complete elliptic integral of the first kind.
(Note: the circumference of an ellipse is 4aK(e2), where a is the semi-major axis
and e the eccentricity.)
(d) Show that K(m) is given by the power series expansion

K(m) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

mn,

and give an estimate for the ratio of the period for θ0 = 60◦ to that for small
angles.

1.9 As mentioned in the footnote in section 1.3, a current i1 flowing through a
wire segment d~s1 at ~s1 exerts a force

~F12 =
µ0

4π
i1i2

d~s2 × (d~s1 × ~r )
|r|3

on a current i2 flowing through a wire segment d~s2 at ~s2, where ~r = ~s2 − ~s1.
(a) Show, as stated in that footnote, that the sum of this force and its Newtonian
reaction force is

~F12 + ~F21 =
µ0

4π
i1i2
|r|3 [d~s1(d~s2 · ~r)− d~s2(d~s1 · ~r)] ,

which is not generally zero.
(b) Show that if the currents each flow around closed loops, the total force

∮ ∮
F12+

F21 vanishes.
[Note: Eq. (A.7) of appendix (A.1) may be useful, along with Stokes’ theorem.]


