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1 Charged Particle Energy Loss

We now turn to the motion of relativistic charged particles moving through
media, interacting on an atomic scale. One thing that will happen is that
they will scatter with electrons. If the energy transfer is large enough, we
may be able to ignore the fact that the electrons had been bound in atomic
states, and treat it as having been a free electron at rest, as we always do
when discussing the Compton effect for an incident X-ray.

Let us take the speed, mass and charge of our swiftly moving particle to
be v, M and ze, with E = Mγc2, P = Mβγc. The electron has mass m and
charge −e.

Unless the swift particle is an electron or a positron, it will be far heavier
than the electron, M � m, and we can treat the scattering as Coulomb
scattering of the electron in the rest frame of the swift particle. Then we
have Rutherford scattering. The electron will scatter with a distribution of
angles given by the Rutherford scattering formula, which Jackson claims in
well-known:

dσ

dΩ
=

(
ze2

2vp

)2
1

sin4(θ/2)
, (1)

where p = mβγc is the momentum of the electron. Jackson knows well a lot
of things the rest of us don’t know at all, for although the non-relativistic
formula, with p → mv, is indeed well known, the relativistic version surely
is not. The nonrelativistic expression is easily derivable from conservation
of energy, angular momentum, and the Runge-Lenz vector, so that the re-
lation between impact parameter b and scattering angle θ can be derived
simply by looking at the conserved values infinitely before and after the col-
lision. Unfortunately the Runge-Lenz vector is not conserved relativistically,
though people1 have discussed a rotating version of it. Jackson’s formula is
derivable2.

1Yoshida, Phys. Rev. A38 (88) 19.
2See the Appendix of J. Huschilt and W. E. Baylis, Phys. Rev. D17 (78) 985.
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In the “laboratory”, i.e. the rest frame of the medium, we are not inter-
ested in the scattering angle of the electron but are interested in the change
of momentum of the swift particle, so we can reexpress this cross section in
terms of the 4-momentum transfer, Q2 = −(p′µ − pµ)2 > 0, which for elastic
scattering will be

Q2 = 4p2 sin2(θ/2), dQ2 = 2p2 sin θ dθ,

so

dΩ = 2π sin θ dθ =
π

p2
dQ2,

dσ

dQ2
=

π

p2

dσ

dΩ
= 4π

(
ze2

vQ2

)2

.

We don’t need to worry about Lorentz transforming dσ
as that is the area transverse to the boost back to the
lab frame. In the swift frame P µ = (Mc,~0), pµ =
(mcγ,−mγ~v), so P ·p = Mmc2γ, so β2 = 1−(Mmc2/P ·p)2.

p’

2 p sin θ /2

θ

electron
in M rest
frame
p

What is of most interest is the energy lost to the electron, T = (p′ 0− p0)c in
the lab, where pµ = (mc,~0), so mT = p · (p′−p) = p · p′−p2 = −1

2
(p′−p)2 =

1
2
Q2. Replacing Q2 by 2mT on both sides of the cross section equation,

dσ

dT
=

2πz2e4

mv2T 2
.

We will use this formula to find the rate of energy loss as the swift particle
penetrates the medium, but first we must note the limits on its applicability.
It seems to suggest a non-zero cross section for losing arbitrary amounts of
energy, but as

T =
Q2

2m
= 2

p2

m
sin2

(
θ

2

)
≤ 2m(cβγ)2,

there is an upper limit on T . There is also a lower limit on the use of the
formula for dσ/dT , for unless enough energy is transferred to the electron
to free it from the confines of the atom, quantum mechanics will restrict its
ability to absorb energy from the scattering. Jackson describes this lower
limit on T as h̄〈ω〉, an effective binding energy, and also as ε. He gives some
proviso’s about corrections due to the spin of the electron and correction
necessary if the incoming speed is so great that the electron has a momentum
in the swift particle’s rest frame that is sufficient to disrupt it, even though
m � M . This can be estimated to be when mγ ∼ M , or E = Mc2γ ∼
c2M2/m.
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Putting aside these objections, we may ask at what rate (in x, the penetra-
tion distance) our swift particle loses energy when passing though a material
with N atoms per unit volume and Z electrons per atom. It loses energy
T ± dT/2 for each of ZNdxdσ/dT electrons it scatters off of, so

dE

dx
= NZ

∫ Tmax

ε
T

dσ

dT
dT = 2πNZ

z2e4

mv2

∫ Tmax

ε

1

T
dT

= 2πNZ
z2e4

mv2
ln
(

Tmax
ε

)

= 2πNZ
z2e4

mv2
ln

(
2mv2γ2

ε

)
.

There are lots of corrections to this formula. Dirac spin of the electron
subtracts β2 from the logarithm. Energy losses from scattering of less than
ε cannot be neglected. The corrections these make to dE/dx doubles the
coefficient of the ln γ and adds a term to it which doesn’t grow much. So
these leave unchanged the basic features that

• For low velocities the energy loss is inversely proportional to β2. As
the coeffient’s dependence on the material is NZ which is roughly pro-
portional to N times the atomic mass, and hence to the density of the
material, the energy loss per gram per cm2 is approximately the same
for most materials.

• For high velocities, β saturates near 1, but γ can grow, so the energy
loss per gram/cm2 grows logarithmically with γ or energy. Therefore
there is a minimum ionizing value, which is somewhere around βγ = 3.
The loss is a bit over 1 MeV/(g/cm2).

We will skip from the small print on page 626 through section 13.2

2 Coherent Effects

In the previous discussion we assumed the charged particle interacted with
the individual electrons incoherently, which is a dubious approximation for
impact parameters on the scale of atomic distances. Part of the scattering
mechanism is more correctly thought of in terms of the polarization the
charged particle induces in the medium as it passes through. Let us write
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Maxwell’s equations in a medium we assume to have a uniform polarizability
ε(ω) but no magnetization, in our new (Gaussian) units,

~∇ · ~D = 4πρ (2)

~∇ · ~B = 0 (3)

~∇× ~B − 1

c

∂ ~D

∂t
=

4π

c
~J (4)

~∇× ~E +
1

c

∂ ~B

∂t
= 0 (5)

with the vector and scalar potentials giving

~B = ~∇× ~A, ~E = −~∇Φ− 1

c

∂ ~A

∂t
.

If we write all of these as Fourier transforms in all four dimensions

F (~x, t) =
1

(2π)2

∫
d3k

∫
dωF (~k, ω)ei~k·~x−iωt,

we get

~E(~k, ω) = −i~kΦ(~k, ω) +
iω

c
~A(~k, ω)

~D(~k, ω) = −iε(ω)~k Φ(~k, ω) +
iωε(ω)

c
~A(~k, ω)

~B(~k, ω) = i~k × ~A(~k, ω)

so (2) and (4) become

ε(ω)k2Φ(~k, ω)− ωε(ω)

c
~k · ~A(~k, ω) = 4πρ(~k, ω)

−~k ×
(
~k × ~A(~k, ω)

)
+

ω

c
ε(ω)~k Φ(~k, ω)− ω2ε(ω)

c2
~A(~k, ω) =

4π

c
~J(~k, ω)

The gauge invariance Aµ → Aµ − ∂µΛ, or ~A → ~A + ~∇Λ, Φ → Φ − 1
c

∂Λ
∂t

,
applies even in macroscopic media, so we may require a modified Lorenz
gauge condition

ε

c

∂Φ

∂t
+ ~∇ · ~A = 0, or ~k · ~A(~k, ω) =

ωε(ω)

c
Φ.
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Then we can write our equations as

ε(ω)k2Φ(~k, ω)− ω2ε2(ω)

c2
Φ(~k, ω) = 4πρ(~k, ω)

k2 ~A(~k, ω)− ω2ε(ω)

c2
~A(~k, ω) =

4π

c
~J(~k, ω)

We are going to consider the field set up by our swift particle which we
can consider moving at a nearly constant velocity ~v. We will analyze the
effect this has on the electrons in atoms a distance b away from that path, to
find the energy lost to such electrons. We are therefore assuming the loss of
energy is slow enough to ignore the change in ~v while calculating the effect
on the local atoms.

Thus the source of the field is the free charge and current

ρ(~x, t) = zeδ3(~x− ~vt), ~J((~x, t) = ~vρ(~x, t) = ze~vδ3(~x− ~vt),

which means the fourier transformed source is

ρ(~k, ω) =
ze

(2π)2

∫
d3xdt δ3(~x− ~vt)e−i~k·~x+iωt =

ze

(2π)2

∫
dt e−i(~k·~v−ω)t

=
ze

2π
δ(ω − ~k · ~v)

and ~J(~k, ω) = ~vρ(~k, ω). In Fourier space the equations for Φ and ~A become
trivial to solve:

Φ(~k, ω) =
2ze

ε(ω)

δ(ω − ~k · ~v)

k2 − ω2ε(ω)/c2

~A(~k, ω) =
~vε(ω)

c
Φ(~k, ω)

~E(~k, ω) = −i~kΦ(~k, ω) + i
ω

c
~A(~k, ω) =

(
−i~k + i

ωε(ω)

c2
~v

)
Φ(~k, ω).

To evaluate the effect of this field on electrons in atoms we make use of
the model described in §7.5, in which the electrons in an atom are considered
harmonic oscillators with natural frequencies ωj, damping constants γj and
oscillator strengths fj, (with

∑
fj = Z), which respond to a local electric

field ~E(ω) with

~xj(ω) = − e

m

~E(ω)

ω2
j − ω2 − iωγj

.
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In terms of this model the dielectric constant is

ε(ω) = 1 +
4πNe2

m

∑
j

fj

ω2
j − ω2 − iωγj

.

Each of these electrons will absorb an energy

∆E = −e
∫ ∞

−∞
dt~vj(t) · ~E(~x, t)

= − e

2π

∫ ∞

−∞
dt
∫ ∞

−∞
dω
(
−iωxj(ω)e−iωt

) ∫ ∞

−∞
dω′ ~E∗(~x, ω′)eiω′t

= ie
∫ ∞

−∞
dω ωxj(ω) ~E∗(~x, ω) = 2e Re

∫ ∞

0
dω iωxj(ω) ~E∗(~x, ω)

where in the last line we made use of the requirement, because ~x(t) and ~E(t)

are real, that ~x(−ω) = ~x∗(ω) and the same for ~E. Let us take the velocity
of the swift particle along the x axis and evaluate this loss of energy for an
atom at location (0, b, 0), so the required electric field is

~E(~x, ω) =
1

(2π)3/2

∫
d3k ~E(~k, ω)eik2b.

Then the loss of energy from an atom a distance b away is

−∆E =
2e2

m

∑
j

fj Re
∫ ∞

0
dω

iω| ~E|2
ω2

j − ω2 − iωγj
,

and as there are 2πNbdb such atoms per unit distance along the particle’s
path, the energy loss per unit distance is

dE

dx
=

∫ ∞

0
b db Re

∫ ∞

0
dω iω| ~E|24πNe2

m

∑
j

fj

ω2
j − ω2 − iωγj

=
∫ ∞

0
b db Re

∫ ∞

0
dω iω| ~E|2 (ε(ω)− 1) .

Note the −1 does not contribute to the Re part.
We will need to evaluate | ~E|2. This is a bit of a slog. In Fourier space we

have

~E(~k, ω) =

(
−i~k + i

ωε(ω)

c2
~v

)
2ze

ε(ω)

δ(ω − k1v)

k2 − ω2ε(ω)/c2
,
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so

~E(~x = (0, b, 0), ω) =
−i

(2π)3/2

∫
d3keik2b

(
~k − ωε(ω)

c2
~v

)
2ze

ε(ω)

δ(ω − k1~v)

k2 − ω2ε(ω)/c2

=
−i2ze

(2π)3/2vε(ω)

∫ ∞

−∞
dk2 eik2b

∫ ∞

−∞
dk3(

~k − ωε(ω)

c2
~v

)
1

ω2/v2 + k2
2 + k2

3 − ω2ε(ω)/c2
,

where k1 = ω/v. For E1 this gives

E1(ω) =
−i2zeω

(2π)3/2v2ε(ω)

(
1− ε(ω)β2

) ∫ ∞

−∞
dk2 eik2b

∫ ∞

−∞
dk3

1

ω2/v2 + k2
2 + k2

3 − ω2ε(ω)/c2

=
−izeω√
2πv2ε(ω)

(
1− ε(ω)β2

) ∫ ∞

−∞
dk2 eik2b 1√

k2
2 + λ2︸ ︷︷ ︸

2K0(λb)

where

λ2 =
ω2

v2
− ω2ε(ω)

c2
=

ω2

v2

(
1− β2ε(ω)

)
.

Note whenever necessary ε should be considered to have a positive imaginary
part. This can be evaluated3

E1(ω) = −i

√
2

π

zeω

v2

(
1

ε(ω)
− β2

)
K0(λb).

Next, we turn to E2 and E3

E2(ω) =
−ize√
2πvε(ω)

∫ ∞

−∞
dk2 eik2b k2

1√
λ2 + k2

2︸ ︷︷ ︸
2iλK1(λb)

=
ze

v

√
2

π

λ

ε(ω)
K1(λb)

3Abramowitz and Stegun tell us Kν(xz) = Γ(ν+ 1
2 )(2z)ν

√
πxν

∫∞
0

cos(xt)dt

(t2+z2)ν+ 1
2
. Expand the

cosine in exponentials and rewrite the second term as the extension of the first for ∞ <
t < 0, to get

∫∞
−∞ dxeibx(x2 + λ2)−1/2 = 2K0(λb). The same integral with an extra x (or

k2) in the integrand can be found as the derivative with respect to b, which is 2iλK1(λb),
as K ′

0(z) = −K1(z) (9.6.27).
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E3(ω) =
−ize√
2πvε(ω)

∫ ∞

−∞
dk2 eik2b

∫ ∞

−∞
dk3

k3

ω2/v2 + k2
2 + k2

3 − ω2ε(ω)/c2
= 0

where E3 = 0 by symmetry.
The energy loss due to impact parameters larger than b0 is(

dE

dx

)
b>b0

=
∫ ∞

b0
bdb Re

∫ ∞

0
−iωε(ω)| ~E(ω)|2dω

=
2

π

z2e2

v2
Re

∫ ∞

0
dω (−iω)ε(ω)

∫ ∞

b0
b db

[
ω2

v2

(
1

ε(ω)
− β2

)2

K2
0 (λb) +

λ2

ε2(ω)︸ ︷︷ ︸
1

ε(ω)

ω2

v2

(
1

ε(ω)
− β2

)
K2

1 (λb)
]

The term in [ ] is(
1

ε(ω)
− β2

)
ω2

v2ε(ω)

[(
1− β2ε(ω)

)
K2

0 −K2
1

]

Actually we should have used absolute values around [ ], which is relevant
when λ nearly vanishes and its imaginary part becomes important.

The integral over impact parameter b can be done, using4 K ′
0(z) =

−K1(z) and K ′
1(z) = −K0(z) − 1

z
K1(z). But things are complicated by

the fact that λ cannot be taken to be real.
I don’t quite get this, but Jackson claims(
dE

dx

)
b>b0

=
2

π

z2e2

v2
Re

∫ ∞

0
dω (iωλ∗a)K1(λ

∗a)K0(λa)

(
1

ε(ω)
− β2

)
.

We will derive this equation more transparently in the next lecture.

[Note: the following is my own, Jackson doesn’t discuss this.] This eval-
uation is more accurate than our free electron calculation for large impact
parameter, where the atomic electrons feel each others effects by the polariz-
ability, but not for the atomic-scale, so it is best to use this expression only

4A&S 9.6.26
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for b > b0, some cutoff, below which we use the free-electron calculation.
with ε the energy loss corresponding to b0. From (1),

dσ = 2πbdb = 2π sin θdθ

(
ze2

2vp

)2
1

sin4(θ/2)

= 2π
dQ2

2p2

(
ze2

2vp

)2 (
4p2

Q2

)2

= 2π
4p2

m

dT

T 2

(
ze2

2vp

)2

so b2 =

(
2ze2

v

)2
1

2mT
. So the ε we should use for the previous discussion is

ε =
1

2m

(
2ze2

vb0

)2

, with some b0 � a, the interatomic distance.


