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We now begin with Chapter 12, on the relativistic dynamics of charged
particles in interaction with electromagnetic fields. I am permuting the order
in Jackson and will consider sections 2 and 3 before section 1, and we will
skip section 4.

1 Motion of charged particles in fixed exter-

nal fields

There are many applications which require an analysis of how charged par-
ticles move in static external (macroscopic) electromagnetic fields. These
include the bending of beams to make circular accelerators for nuclear and
particle physics, understanding plasmas in deep space and in attempts to
make fusion energy devices, designing velocity and momentum separators
for beams of particles, understanding van Allen belts which cause the auro-
ras, and many other applications. Of course, all of these analyses are based
on the general formula dpα/dτ = (q/c)F αβUβ, or in nonrelativistic language,

d~p

dt
= q

(
~E +

1

c
~v × ~B

)
,

dE

dt
= q~v · ~E.

1.1 Constant Uniform ~B Only

First let us consider a uniform constant ~B with no electric field. The energy
is constant, so so are |v| and γ, and we have

d~v

dt
=

1

γm

d~p

dt
=

q

γmc
~v × ~B = ~v × ~ωB, where ~ωB =

q

γmc
~B =

qc ~B

E
.

Thus the component of ~v parallel to ~B is a constant, and the other two
components rotate counterclockwise about the ~B direction if the charge is
positive. The position component parallel to ~B grows linearly with time,
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while the motion transverse to that is in a circle with angular velocity ωB.
The radius a of this circle is determined from v⊥ = ωBa, so

a =
v⊥
ωB

=
p⊥
mγ

/
qB

γmc
=

p⊥c

qB
.

This can be used to determine the momentum of a particle by measuring
the radius of curvature in a magnetic field, and has been used in particle
detectors at all high energy accelerators ever since the field began. It is also
the formula which tells us how strong the magnetics must be at the LHC at
CERN to get 7 TeV protons to bend in a circle with a circumference of only
27 km.1

The fact that the frequency of revolution ωB/2π = qB/2πmcγ is nearly
constant independent of v as long as the particle is nonrelativistic (γ ≈ 1)
makes possible the continuous acceleration of particles in a cyclotron2, which
consists of two “D” shaped cavities with an oscillating voltage between them,
with a constant magnetic field normal to their plane which provides the
bending to make particles go in semicircles of ever larger radius, each in half a
period of the oscillating voltage, until they reach the outside of the cyclotron
and come out in a “high energy” beam. The first cyclotron was built by
Lawrence (not Lorentz) in 1929, was 4 inches in diameter. Three years later
an 11 inch one set the high energy record for protons at 1 MeV. Lawrence
kept building bigger and bigger machines, ignoring warnings that γ = 1 was
not an exact statement, so to get the 184 inch cyclotron to work, particles
had to be accelerated in bunches with the frequency gradually decreased in
synchonicity with the increasing particle energies and γ’s.

1.2 Constant Uniform ~E and ~B

Next. let’s consider adding a fixed uniform electric field to our magnetic one.
The electric field does do work on the particle, so we can no longer assume
|v| and γ are constant, and the situation is considerably more complicated. If
the electric field is perpendicular to the magnetic field, however, we can use
a Lorentz transformation to a more suitable frame to help. If we take ~E to

1With B = P⊥c/qR in gaussian units, but B = P⊥/qR in SI units. As P⊥ ≈ E/c and
E/q = 7× 1012 V, R = 4300 m, B = 5.4 T. Unfortunately the 1232 dipole magnets, each
14.3 m long, do not cover the whole circumference, but only 17.6 km, so the magnets need
to be 8.3 T, which is considerably harder to maintain.

2A nice web page is http://www.aip.org/history/lawrence/epa.htm
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be in the y direction and ~B in the z, we can apply a Lorentz transformation
in the x direction, with ux = c tanh ζ . Then the Lorentz transformation Aµ

ν

and the primed and unprimed F µν are

Aµ
ν =




cosh ζ sinh ζ 0 0
sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1


 ,

F µν =




0 0 −Ey 0
0 0 −Bz 0
Ey Bz 0 0
0 0 0 0


→ F ′µν =




0 0 −E ′
y 0

0 0 −B′
z 0

E ′
y B′

z 0 0
0 0 0 0


 ,

with

E ′
y = cosh ζ Ey − sinh ζ Bz

B′
z = cosh ζ Bz − sinh ζ Ey

or, more generally, as long as ~u ⊥ ~B and ~u ⊥ ~E,

~E ′ = γ( ~E +
~u

c
× ~B), ~B ′ = γ( ~B − ~u

c
× ~E).

If we choose ~u = c ~E × ~B/B2, we have

~E ′ = γ
(
~E + ( ~E × B̂)× B̂

)
= γ

(
~E − ~E + ( ~E · B̂)B̂

)
= 0

~B ′ = γ
(

~B − 1

B2
( ~E × ~B)× ~E

)
= γ ~B

(
1− E2

B2

)
=

1

γ
~B,

as ~u 2/c2 = E2/B2. So in the O′ frame, we have our previous situation:

the particle spirals around the ~B ′ field, though more slowly than before3.
But in the original O frame, there is an additional “ ~E × ~B drift” velocity
~u = c ~E × ~B/B2. Note that this velocity is in the same direction regardless

of the sign of the charge of the particle, as it depends only on the fields ~E
and ~B, while the helical motion is reversed for particles of opposite charge.

There is an important special case, when the helical motion degenerates
into constant motion along the ~B ′ field, so ~v ′ is a constant in the ~B direction,

3Note that the γ here, γ(u) = γ(E/B), is not the same as the particle’s γ which enters
into the expression for ω.
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but more importantly the drift velocity in the ~E × ~B direction is u = cE/B.
Only particles with this value of the velocity component in that direction will
travel in straight lines. and so a series of apertures can serve as a velocity
selector. You learned all this as freshman, though then you assumed ~u ⊥ ~B,
which we now see is not required.

Transforming to a frame moving at cE/B is not possible if E > B. Näıve
use of the Lorentz transformation will give imaginary coordinates and fields.
But there is a value of u which will annihilate the ~B field instead of the ~E
field, so we choose ~u = c ~E × ~B/E2 and we are left with a problem with

a constant uniform ~E ′, no ~B ′, and a constant d~p ′/dt′. Nonrelativistically
this would give simple ballistic (parabolic) motion. Relativistically there are
corrections due to the variation of γ in ~p = mγ~v, so the motion is more
complicated, but still analytically solvable (see Problem 12.3).

As you will see from homework, E2 − B2 and ~E · ~B are both invariants.
This is why, for ~E ⊥ ~B, we had two distinct cases, depending on the sign
of E2 − B2. This also shows that if ~E and ~B are not perpendicular in any
frame, so ~E · ~B 6= 0 in that frame, the same is true in any frame, and it is
not possible to do a Lorentz transformation to a frame in which one of them
vanishes. Still, the problem of uniform static ~E and ~B is solvable by brute
force using cartesian coordinates.

There are many important situations in which charged particles move
in a static but not uniform magnetic field. If there is a sense in which the
field varies slowly, one may calculate the orbits as perturbations about the
solution with uniform ~B. Often, we find a helical motion, as for uniform ~B,
somewhat spiraling around the field lines, but with a drift slow compared to
the helical velocity. This is explained in section 4, but ...

We will skip section 4, and go back now to section 1.

The last approximation we wish to consider uses the adiabatic invariance
of the action. The action involved is

∮ ~P⊥ · d~r⊥ for the motion in the plane
perpendicular to the field lines. But before we can discuss this, we need to
know the canonical momentum ~P conjugate to ~r, which is not the ordinary
momentum ~p = mγ~u. To find the canonical momentum we need to discuss
the Lagrangian.
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2 Lagrangian and Hamiltonian

In the first three pages of Jackson we learned the basic laws of electromag-
netism: four Maxwell equations and one Lorentz force, and those managed to
keep us busy for the next 500 pages. Now we have become more sophisticated,
using four-dimensional notation, and we have reduced Maxwell’s equations
to 2, so we have a “complete” description of electromagnetism in only three
equations. Do we really need to get any more sophisticated, and ask if we
can rewrite things in Lagrangian formulation?

We might have asked the same question about Newtonian mechanics —
after all, Lagrangian mechanics is nothing but a rewriting of F = ma, specify-
ing lagrangians instead of force laws. But Lagrange invented his formulation
for a reason— it helped him with complex solar system dynamics, and we
would have a hard time doing quantum mechanics without the Hamiltonian.
Also, these elegant reformulations are pretty! And finally, we will need a
lagrangian formulation to make quantum field theory, and to develop con-
cepts of gauge fields that are generalizable to non-Abelian field theories to
give us the Standard Model of particle physics, which includes the gauge field
theories called the Electro-Weak theory and Quantum Chromodynamics.

So, whatever the motivation, let us turn to the Lagrangian formulation of
mechanics, starting with a free point particle. Recall that the way Hamilton’s
principle works is that for each conceivable motion from some specific initial
position at an initial time to some specific final position at some final time, we
associate an action, and the real motion is a path for which the action is an
extremum, with small perturbations in the path ~x(t) producing no change in
the action (to first order in the function δx(t)). Notice that this formulation
treats space and time on the same footing, so it is a good starting point for
a relativistic theory.

We usually write the action as an integral of the Lagrangian over time

A =
∫

Ldt,

which sort of messes up the obvious relativity by picking out time. We
expect the action to be a relativistic invariant, as its variation determines
the physical path which must be physically the same regardless of which
observer is describing it4. I will do things a bit differently from Jackson

4This is not a totally convincing argument, and in fact we are being a bit too demanding
here, but the basic idea is right: A should be a scalar.
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— let’s begin by asking what is the simplest action that could describe a
point particle? It is a functional of the path, and should be invariant, so the
simplest possibility is the invariant length of the path, that is, the proper
time. To get the units right we will multiply by −mc2, so let’s try

A = −mc2
∫

dτ = −mc
∫ √

dxµdxµ = −mc
∫ √

UαUα dτ

= −mc2
∫ √

1− ~u 2

c2
dt.

So the Lagrangian is

L(~x, ~u, t) = − mc2
/

γ(~u) = −mc2

√
1− ~u 2

c2
,

and we should note that it is not an invariant, but instead transforms so that
Ldt is an invariant.

In three dimensional language this Lagrangian gives us a canonical mo-
mentum (

~P
)

i
=

∂L

∂ui

=
mui√
1− ~u 2

c2

= (~p )i,

the same momentum we already associated with a relativistic particle. It
also gives us, from the Euler-Lagrange equations

d

dt

∂L

∂ui
− ∂L

∂xi
= 0,

the equation pi = constant, as xi is an ignorable coordinate. This is, of
course, the correct equation of motion for a free particle.

Shall we be a bit more ambitious? We would like to have electromag-
netism enter. If our particle has a charge q, what invariant could we add
to γL to produce an interaction with electromagnetism? The Lagrangian is
supposed to depend only on positions and velocities, and if we want a rel-
ativistic (and translation) invariant Lagrangian, it can depend on position
only through the value of the electromagnetic field at the point the particle
is at. So the only quantity the particle can provide is the four-velocity Uα,
which needs to be dotted into a vector. Electromagnetism provides only the
4-vector Aα and the field-strength F αβ. We can’t use UαUβF

αβ because it
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is identically zero, so if we want an interaction linear in the fields our only
choice is

γLint = −q

c
UαAα, =⇒ Lint = −qΦ +

q

c
~u · ~A.

The first term looks like the right negative of the potential energy (recall L is
often T −V ) for the electrostatic field. If we now consider the full lagrangian

L(~x, ~u, t) = −mc2

√
1− ~u 2

c2
+

q

c
~u · ~A(~x, t)− qΦ(~x, t),

the canonical momentum becomes

~P = ∂L/∂~u =
m~u√
1− ~u 2

c2

+
q

c
~A(~x, t) = ~p +

q

c
~A,

so the canonical momentum is not the ordinary momentum ~p = mγ~u, but
has an extra piece proportional to the vector potential. The equations of
motion5 are now

d

dt

∂L

∂ui︸︷︷︸
Pi

− ∂L

∂xi
=

dpi

dt
+

q

c

d

dt
~Ai︸ ︷︷ ︸(

∂Ai

∂t
+ uj∂jAi

)
−q

c
uj∂iAj + q∂iΦ

=
dpi

dt
+

q

c

∂ ~Ai

∂t
+ q∂iΦ +

q

c
(uj∂jAi − uj∂iAj)

= 0 =


d~p

dt
+

q

c

∂ ~A

∂t
+ q~∇Φ− q

c
~u×

(
~∇× ~A

)
i

so
d~p

dt
= q ~E +

q

c
~u× ~B

so we see that this Lagrangian gives us the correct Lorentz force equation.
What is the Hamiltonian? H = ~P · ~u− L, but reexpressed in terms of ~P

rather than ~u. As

~u = ~p/mγ(u) =
~p

m

√
1− u2/c2 =⇒ ~u =

c~p√
p2 + m2c2

,

5Note all vectors and indices here are three dimensional, without distinction of upper
and lower indices. See footnote in section 2.2 for conversion to 4-D.

504: Lecture 18 Last Latexed: April 5, 2011 at 12:13 8

and mγ(u) =
√

p2 + m2c2/c. Then we need to substitute ~p → ~P − q ~A/c.
Thus

H =
~P ·

(
~P − q ~A/c

)
+ m2c2

mγ(u)
− q

cmγ(u)

(
~P − q ~A/c

)
· ~A + qΦ

=

(
~P − q ~A/c

)2
+ m2c2

mγ(u)
+ qΦ =

√
(c ~P − q ~A)2 + m2c4 + qΦ.

Note H is the total energy, the kinetic energy p0c + eΦ, so this just verifies
(p0)2 − ~p 2 = m2c2.

2.1 Adiabatic Invariance of Flux Through Particle Or-

bits

Before we continue with more formal developments of the Lagrangian and
Hamiltonian presentations of electromagnetism, let us make use of the canon-
ical momentum we have just found. From our mechanics course, we recall
that if a system is such that it is a slowly varying perturbation on an in-
tegrable system, and if the motion in an action-angle pair is cyclic in the
unperturbed system, the action will be approximately invariant, even over
times where the motion changes considerably.

The application here is that the motion perpendicular to a uniform static
magnetic field is cyclic, so the action J =

∮ ~P⊥ · d~r⊥ is an invariant. We
need to use the canonical momentum ~P = ~p+(q/c) ~A here, rather than just
~p = mγ~v. So the action is

J =
∮

mγ~v⊥ · d~r⊥ +
q

c

∮
~A · d~r.

As the motion is a circle6 with radius a, with ~v⊥ = −~ωB × ~r, the first term
is − ∫ 2π

0 mγωBa2dθ = −2πmγωBa2. As mγ~ωB = q ~B/c, this is just −2qΦB/c,
where ΦB is the magnetic flux through the orbit. As Stokes theorem tells us∮ ~A · d~r =

∫
S

~∇× ~A =
∫
S ~n · ~B, the second term is just qΦB/c, so

−J =
q

c
ΦB =

q

c
Bπa2 = π

c

q

p2
⊥

B
,

6Signs here are a bit problematic. The usual description of a particle rotating about an
axis with angular velocity ~ω has ~v = ~ω×~r, and acceleration ~a = ~ω×~v = ~ω×(~ω×~r) = −ω2~r.
Notice, however, that (12.38) is the reverse of that, so ω = −ωB. This accounts for the
negative sign in ~v⊥ = −~ωB × ~r.
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and each of these expressions can be used as an approximate invariant if ~B
varies slowly, compared to the gyroradius of the particle’s motion.

For motion in a static purely magnetic field the speed is constant, and so
is γ, but we see that the transverse speed is proportional to the square root
of the magnetic field. Of course the constant speed squared is v2

‖ + v2
⊥, so if

the particle drifts along a field line into a region of stronger magnetic field,
its v⊥ can grow until it consumes all the available speed, which means the
motion along the field line must stop and
reverse itself. This is called a magnetic
mirror. This effect can be understood di-
rectly in terms of the Lorentz force by not-
ing that, because ~B is divergenceless, if

B
v

F

the field is getting stronger the field lines are converging, which means they
have a radial component which produces a force on the circling charged
particles which opposes their drift into this region.

2.2 Covariant description

Let us return to discussing the Lagrangian formalism. For the free particle
our action could be described in completely covariant language as the proper
time of the path taken. If we choose an arbitrary parameterization along the
path, so xµ(λ) is a path through spacetime, the infinitesimal proper time is

1

c

√
ηµνdxµdxν =

1

c

√
ηµν

dxµ

dλ

dxν

dλ
dλ,

so we can write the action as

A = −mc
∫ √

ηµν
dxµ

dλ

dxν

dλ
dλ.

We can now look for an extremal path xµ(λ) in the usual way, with λ taking
the role usually taken by time, and get the Euler-Lagrange equation

d

dλ

∂L

∂ ∂xµ

∂λ

=
∂L

∂xµ
= 0,

as xµ is an ignorable coordinate. Evaluating the derivative in the left hand
side, we find

d

dλ


 ηµν

dxν

dλ√
ηµν

dxµ

dλ
dxν

dλ


 = 0,
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or
dxµ

dλ
= Cµ

√
ηµν

dxµ

dλ

dxν

dλ
.

This equation determines less than meets the eye. It appears to be four
differential equations determining the four function xµ(λ). But, in addition
to introducing four arbitary constants of integration, Cµ, in fact it determines
only three independent functions of λ, as we can see from contracting it with
itself. One equation is

ηµν
dxµ

dλ

dxν

dλ
= C2ηµν

dxµ

dλ

dxν

dλ
,

which gives us only that C2 = 1 and not a differential equation helping to
determine xµ as a function of λ.

This lack of a deterministic equation should not be surprising if we recog-
nize that the length of the path (the proper time) is completely independent
of how the path is parameterized. The physics of xµ(λ) is no different from
the physics of xµ(σ(λ)), as long as σ is a monotonic function of λ. This
inability to determine the future is a form of gauge invariance, though not
the one we are used to (and will further discuss) of electrodynamics. But it
is not a serious issue, for we can choose to take the proper time along the
path as our parameter. Then ηµν

dxµ

dτ
dxν

dτ
= c2, and our equation of motion is

dxµ

dτ
=

1

m
pµ = constant,

as it should be.
What do we do about the contribution of Lint to the action,

Aint =
∫ −q

c

dxµ

dτ
Aµ

1

γ
dt =

∫ −q

c

dxµ

dτ
Aµ dτ =

∫ −q

c
Aµdxµ ?

The last expression makes it clear — this involves completely covariant quan-
tities. But to use the Euler Lagrange equations we go back to the penultimate
expression, and write the equivalent of a Lagrangian for variation of xµ(λ),

L̃ = −mc

√
ηαβ

∂xα

∂λ

∂xβ

∂λ
− q

c
Aα

∂xα

∂λ

with A =
∫

L̃dλ. In looking at the Euler-Lagrange equations we need to recall
that Aµ is a function of position, so again d/dτ of it is a stream derivative,
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so
d

dτ
Aµ = Uα ∂Aµ

∂xα
.

Thus the equations corresponding to Euler-Lagrange give

d

dτ

∂

∂Uµ

(
−mc

√
ηνρUνUρ − q

c
UνAν

)
=

∂

∂xµ

(
−mc

√
ηνρUνUρ − q

c
UνAν

)

−m
d

dτ
Uµ − q

c
Uν ∂Aµ

∂xν
= −q

c
Uν ∂Aν

∂xµ
.

In the second line we imposed (after taking the derivative) the constraint
U2 = c2. Now

m
d

dτ
Uµ =

q

c
Uν

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
=

q

c
UνFµν , (1)

the correct Lorentz force.
Note that the four dimensional canonical momentum can be defined as7

Pα = − ∂L̃

∂∂xα

∂λ

= mUα +
q

c
Aα,

where we have required our parameter λ to be c times the proper time.
Notice that we now have(

Pα − q

c
Aα

)(
P α − q

c
Aα
)

= m2UαUα = m2c2.

This is one example of the minimum substitution principle, which states that
electromagnetic interactions of other objects can be obtained from replacing
pα of the theory without electromagnetic interactions with pα − (q/c)Aα

everywhere.

7Why the minus sign? In deriving the Lorentz force earlier, we used 3-D notation with
ui = (~u)i, but as part of the 4-vector U , Uα = (γ, γui) but Uα = (γ,−γui), Ui = −ui.
For covariance, when we differentiate L with respect to contravariant Uα, we need to get
the covariant

Pα = (E/c,−~P ) ∝ ∂L

∂Uα
.

To get the sign right for the spatial components, we need the proportionality constant to
be −1.
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2.3 Action for the Electromagnetic Fields

We have written a Lagrangian which determines the dynamics of charged par-
ticles in the presence of a predetermined electromagnetic field, but of course
this course has been devoted to a study of the mutual interactions of charged
particles and electromagnetic fields. The Lorentz force and Maxwell’s equa-
tions form a coupled set of equations which determine the evolution of both
the particles and the fields. We need a Lagrangian that does both as well.

What will such a Lagrangian depend on? The fields are degrees of freedom
at every point of space (-time). So we need the lagrangian formulation of
a continuum8, field, where the discrete variables qi are replaced by fields,
generally some set of φi(~x, t), and the velocities are replaced by ∂µφi. Rather
than a sum over discrete degrees of freedom, the Lagrangian becomes an
integral of a Lagrangian density L over space, and the action becomes its
integral over space-time. Even for nonrelativistic physics the space and time
derivatives enter the same way, and the Euler-Lagrange equations become

∂µ
∂L

∂(∂φi/∂xµ)
− ∂L

∂φi
= 0.

What are our fundamental fields? A lagrangian should depend on the
fields φi and their first derivatives ∂µφi, and will give equations of motion with
second order derivatives. Maxwell’s equations involve only first derivatives
of ~E and ~B, or F µν , but we know that F µν can be written in terms of first
derivatives of Aµ, so we take the basic degrees of freedom to be the fields
Aµ(xν).

We have already seen that the action should contain −(q/c)Aµdxµ if we
have a single particle of charge q. That is, the Lagrangian has an interaction
term −qiΦ(~xi) + qi

c
~ui · ~A(~xi). If we have many particles, the interaction term

in L is

∑
i

(
−qiΦ(~xi)− 1

c
qi~ui · ~A(~xi, t)

)
→

∫
d3x

(
−ρ(~x)Φ(~x)− 1

c
~J(~x) · ~A(~x)

)

= −1

c

∫
d3xAα(~x)Jα(~x).

8Those who have not seen the lagrangian formulation of field dynamics might want
to look at my text in www.physics.rutgers.edu/∼shapiro/507/gettext.shtml and
look at chapter 8 (or get book9 2.pdf from the same location). Of course there are also
many published books as well, in particular Landau and Lifshitz “The Classical Theory
of Fields”.
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So we have a piece involving Aµ which will contribute a term Jµ to the Euler-
Lagrange equation for A, but we need a pure electromagnetic field term to
generate the left hand side of Maxwell’s equations, which are linear in the
fields, so the term in the Lagrangian should be quadratic in the fields, Lorentz
invariant, and involve a total of two derivatives. Let us try

L = − 1

16π
F µνFµν − 1

c
JµA

µ,

where it is understood that Fµν stands for ∂µAν−∂νAµ and is not an indepen-
dent field. Note the only contribution to ∂L/∂Aµ, which is supposed to be
taken with the derivative terms held fixed, is the −Jµ/c from the interaction
term. We have

∂Fµν

∂

(
∂Aρ

∂xσ

) = δσ
µδρ

ν − δσ
ν δρ

µ,

so
∂L

∂

(
∂Aρ

∂xσ

) = − 1

4π
Fρσ,

and the full Euler-Lagrange equation is

− 1

4π
∂σF σµ +

1

c
Jµ = 0,

or

∂σF σµ =
4π

c
Jµ.


