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1 Spin and Thomas Precession

Nonrelativistically we know that a current in a loop produces a magnetic field
which at large distances corresponds to a magnetic dipole with a magnetic
moment given by the current times the area of the loop. In general the
magnetic moment (in SI units) is ~m = 1

2

∫
~r × ~J(~r)d3r. If the current is

due to moving charge ~m = 1
2

∫
ρQ(~r)~r × ~v(~r)d3r. This looks like the angular

momentum except for having the charge density instead of the mass density
— if the ratio is a constant,

ρQ(~r)

ρm(~r)
=

Q

m
=⇒ ~m =

1

2

Q

m
~L (SI units) =

Q

2mc
~L (Gaussian units).

If the ratio is not constant, there will be a correction factor g, and ~m = g Q
2mc

~L.
For an elementary particle, say an electron in an atom, the total angular

momentum is not just the orbital angular momentum ~L but rather ~L + ~s,
where ~s is the spin, the intrinsic angular momentum the particle has, which
can be thought of as due to the rotation about its center, though this is näıve
for a point particle like an electron. The spin can only take on a few discrete
values, for an electron sz = ±1

2
h̄. The magnetic moment of atomic-sized

particles is generally called ~µ rather than ~m.
Now the contribution of the orbital motion of an electron in an atom

surely has a fixed charge to mass ratio of e/me, so we would expect g =
1, but the spin is really not understood in classical terms, so it could be
otherwise, and according to the Dirac equation g = 2, though quantum
field theory provides some small corrections (very famously) to that value.
These moments can be measured by the splitting of atomic energy levels
in a uniform magnetic field, known as the Zeeman effect. If there were no
spin, atoms of a given angular momentum h̄` could have components in the
direction of ~B given by h̄m, m = −`,−` + 1, ..., ` and therefore we should
see an odd number of energy levels split by eh̄B/2mc. This is known as the
normal Zeeman effect. But observations differed, we now know because of
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elementary particle (electron) spin, and that is called the anomolous Zeeman
effect.

Let us ask what the equation of motion is for the spin of a particle,
whether an electron or an atom. The torque on a dipole in its rest frame is
~τ = ~m× ~B and the energy U = −~m · ~B. Thus if O′ is the momentary rest
frame of the electron at time t,

d~s ′

dt′
=

ge

2mc
~s ′ × ~B ′, U ′ = − ge

2mc
~s ′ · ~B ′. (1)

What is ~B ′? To first order in ~v/c, the lorentz transformation Aµ
ν = δµ

ν −
vµδ0

ν/c + vνδ
µ
0 /c so F ′ ij = F ij − viF 0j/c + vjF

i0/c =⇒ −εij`B
′
` = −εij`B` +

2viEj/c, or

~B ′ = ~B − ~v

c
× ~E to order O(v2/c2).

If O’s electric field is due to a spherically symmetric potential energy V (r),
as for an electron in a hydrogen atom, we have

e ~E = −~∇V (~r) = −~r

r

dV

dr
,

so the spin contribution to the energy appears to be

U ′ = −~µ ·
(

~B − ~v

c
× ~E

)
= − ge

2mc
~s ′ · ~B − g

2mc2
~s ′ · (~v × ~r)

1

r

dV

dr

= − ge

2mc
~s ′ · ~B +

g

2m2c2
~s ′ · ~L1

r

dV

dr
. (2)

Notice that we have a coupling between the spin and the orbital angular
momentum. The rate of change of spin from (1) appears to be

d~s ′

dt′
=

ge

2mc
~s ′ × ~B − g

2m2c2
~s ′ × ~L

1

r

dV

dr

Unfortunately this is not correct. To get the anomalous Zeeman effect right
we need g = 2, as the Dirac equation tells us it should be, in the ~B term,
but the correct spin orbit term in the fine-structure energy level splittings
(2) seems to be half of what we calculated.

The problem here is that what we are doing is trying to find the change
in spin by boosting from the lab frame to the rest frame at time t, calculating
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the change in spin in the rest frame after some infinitesimal times ∆t, and
then boosting back to the lab frame at time t+∆t. Both of these boosts were
supposed to not involve rotating the coordinate systems, so we don’t add a
spurious rotation to ~s. But the second boost is with a different velocity, so
we are actually using a different frame given by Aµ

ν(−~v −∆~v)Aν
ρ(~v). Why

does that mess up the rotation of the spin? Because

e−(~v+∆~v)· ~Ke~v· ~K = 1I−∆~v · ~K +
1

2
vi(∆v)j [Ki, Kj] +O(v2∆v)

= 1I−∆~v · ~K − 1

2
(~v ×∆~v) · ~S.

The last term represents a rotation of the coordinate system, at a rate ~ωT =
−1

2
~v × ~a = − 1

2m
~v × ~F = − 1

2m
~r × ~v 1

r
dV
dr

, so even if the spin doesn’t rotate in
the momentary rest frame, it does rotate in the lab. This needs to be added
to the “body-fixed” observed rotation, and as this is of the same form as the
~s ′× ~L term, it has the effect of changing g to g−1. The same change occurs
in the ~S · ~L for the energy1 term, changing the g of the spin-orbit term to
g− 1. As g is very nearly 2, and was originally expected to be 1, this caused
considerable confusion historically.

This argument is sort of clear physically but getting the signs right, as
well as going beyond the non-relativistic case, is easier if we formulate things
in relativistic (4-D) language.

Now what is the four-dimensional version of the spin? Spin is really
an angular momentum, which is a lorentz generator with two spatial in-
dices, but spin is represented by a vector using the 3-dimensional Levi-
Civita ε. As spin is the angular momentum of a particle in its rest frame,
we can use the 4-velocity Uα = (1, 0, 0, 0) in the rest frame to write a 4-
vector Sα = εαβγζUβSγζ , and note that we always have UαSα = 0, so
the spin only has three independent components (classically). So the left

1Why? The connection of torque and energy is analogous to that of force and energy.
~F = d

dt
~P =

[
~P , H

]
= −~∇H classically, but −i

[
~P , H

]
if we are treating ~P as the quantum-

mechanical operator ~P = −ih̄~∇ (with h̄ = 1). In the same way we have

~τ =
d

dt
~L = −i

[
~L, H

]
QM

= −i~LH,

where the second and third ~L’s are the differential operator −i~r × ~∇ from Lecture 9
(J9.101)
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hand side of (1) is the spatial part of dSα/dτ , while the right hand side is
(ge/2mc)εαijS

i(−εjk`F
k`/2) = (ge/2mc)S`F α

`. But this does not determine
the whole of dSα/dτ in general, because the equation (1) is not known for the
S0 component in the rest frame, or more generally the component involved
in UαSα, which still needs determining. We can write a correct covariant
equation both sides of which vanish when contracted with Uα:

dSα

dτ
− 1

c2
UαUβ

dSβ

dτ
=

ge

2mc

(
F α

βSβ − 1

c2
UαUζF

ζ
βSβ

)
, (3)

because UαUα = c2. Fortunately we know that UαSα = 0 at all times,
so UαdSα/dτ = −(dUα/dτ)Sα, and if the only force on the particle is the
Lorentz force2

dUα

dτ
=

1

m

dpα

dτ
=

1

m

e

c
FαβUβ .

So we can move the second term on the left hand side of (3) to the other
side,

dSα

dτ
=

ge

2mc

(
F α

βSβ − 1

c2
UαUζF

ζ
βSβ

)
− e

mc3
UαSβFβγU

γ

=
e

mc

[
g

2
F α

βSβ +
1

c2

(
g

2
− 1

)
UαSβF

βζUζ

]
(4)

In the rest frame S ′µ = (0, ~s), so applying a Lorentz transformation

S0 = γ~β · ~s, ~S = ~s +
γ2

γ + 1
(~β · ~s)~β.

(This is most easily seen by assuming ~v is in the x direction, and then making
the result rotationally invariant.) To compare to the previous discussion of
d~s/dt, which we expect to be good to first order in v or β, we need to be

careful, because while ~s ≈ ~S to first order, the time derivative d~β/dτ =

e ~E/mc is zeroth order. Thus to first order in v,

d~s

dτ
=

d~S

dτ
− e

2mc2

[
(~s · ~E)~v + (~s · ~v) ~E

]
.

2If there is a gradient in the magnetic field, there is an additional force from the coupling
of a magnetic moment with an inhomogeneous field. We assume that is not present in this
discussion.
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The first term can be evaluated to first order from (4)

d~Si

dτ
=

e

mc

[
g

2
F i

jsj +
g

2
F i

0
~β · ~s− 1

c2

(
g

2
− 1

)
visjF

j0c
]

d~S

dτ
=

e

mc

[
g

2
~s× ~B +

g

2
(~v · ~s) ~E/c− 1

c

(
g

2
− 1

)
~v(~s · ~E)

]
.

Putting the terms together, to first order in v,

d~s

dτ
=

e

mc

[
g

2
~s× ~B +

g

2
(~v · ~s) ~E/c− 1

c

(
g

2
− 1

)
~v(~s · ~E)

]

− e

2mc2

[
(~s · ~E)~v + (~s · ~v) ~E

]

=
e

mc
~s×

[
g

2
~B − g − 1

2c
~v × ~E

]
. (5)

Notice that the ~E term has g replaced by g − 1 compared to the näıve
derivation. The full expression, correct for all ~v, follows from (4), but is
quite complicated.

A very interesting thing happens if g = 2, as predicted by the Dirac
equation. Then we have the second term in (4) vanishing, and if we have a

pure magnetic field, so that F 0µ = 0, we see that S0 = γ~β · ~s is a constant.
But so are γ and |β| in a pure magnetic field, so we see that the helicity, β̂ ·~s
is conserved.

Now in quantum field theory there are small corrections to g = 2. Because
only the corrections contribute to the evolution of the helicity, they can
be measured very precisely. Also extreme effort has been invested in the
theoretical calculations. Experiment says3

g − 2

2
= 0.001 159 652 180 73
±0.000 000 000 000 28

with the inverse fine structure constant

α−1 = 4πε0h̄c/e2 =
137.035 999 084
± 0.000 000 051

3D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, arχiv:1009.4831
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and theory says4

g − 2

2
= 0.001 159 652 182 79
±0.000 000 000 007 71

certainly one of the most accurately measured quantities in physics.
For the muon5

(
g − 2

2

)
exp

= 0.001 165 920 8

(
g − 2

2

)QED

µ
= 0.001 165 847 19

(
g − 2

2

)EW

µ
= 0.000 000 001 54

(
g − 2

2

)Had

µ
= 0.000 000 071 10

(
g − 2

2

)SM

µ
= 0.001 165 918 58

so this tests all sorts of contributions of quantum field theory and the stan-
dard model.

4Aoyama, Hayakawa, Kinoshita, Nio, Phys. Rev. D 77, 053012 (2008)
5Höcker and Marciano


