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Physics 504, Lecture 11
Feb. 28, 2011

1 Radiation by Sources

We turn our attention to radiation into empty space (no waveguides) by spec-
ified sources. Again our equations are linear and time independent, so we
assume all fields and sources have a time dependence e−iωt. This fourier com-
ponent of the electromagnetic fields will be determined by the same fourier
component of the charge density ρ(~x, t) = ρ(~x)e−iωt and current density
~J(~x, t) = ~J(~x)e−iωt. The electromagnetic fields can be specied by the scalar
and vector potentials, but we recall that the scalar and vector potential have
a gauge invariance In Lorenz gauge, where we require ~∇ · ~A + ∂Φ/c2∂t = 0,
we have

∇2Φ− 1

c2

∂2Φ

∂t2
= −ρ/ε0,

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~J.

Inserting the assumed time dependence, we have that both Φ(~x) and each

component of ~A(~x) satisfy the inhomogeneous Helmholtz equation

(
∇2 + k2

)
Ψ(~x) = −s(~x), (1)

with k = ω/c. The Green’s function equation for this Helmholtz equation
was derived in §6.4. I understand we may need to review this.

This equation is (inhomogeneously) linear in Ψ and is an elliptic partial
differential equation. A solution is a superposition of solutions of the ho-
mogeneous equation with specific solutions giving the inhomogeneous terms,
which can be built up piece by piece. We may think of the right hand side as
a superposition of delta functions, s(~x) =

∫
d~x ′s(~x ′)δ3(~x ′ − ~x), so if we have

a solution of (
∇2

x + k2
)
G(~x,~x ′) = −δ3(~x−~x ′) (2)

the solution of (1) is

Ψ(~x) =
∫

d3~x ′ s(~x ′)G(~x,~x ′).
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From electrostatics, we know that a point charge at the origin, with potential

V (~x) =
q

4πε0|x| has an electric field ~E = −~∇V = q
~x

4πε0|x|3 , and ~∇ · ~E =

−∇2V = qδ3(~x),

so the function φ(~x) = 1/|x| has ~∇φ = −~x/|x|3, ∇2φ = −4πδ3(~x).

On the other hand, W := e±ik|x| satisfies ~∇W = ±ik
~x

|x|W and

∇2W =


±ik


 ~∇ · ~x
|x| − ~x · ~∇ 1

|x|


W − k2 ~x 2

|x|2

W

=

[
±ik

(
3

|x| −
~x 2

|x|3
)
− k2

]
W = ±2ik

|x|W − k2W.

Thus(
∇2

x + k2
)

Wφ =
(
∇2

xW
)
φ + 2(~∇W ) · (~∇φ) + W

(
∇2

xφ
)

+ k2Wφ

= ±2ik

|x|Wφ∓ 2ik
~x

|x|W · ~x

|x|3 − 4πWδ3(~x)

= −4πδ3(~x)

as W (~x)δ3(~x) = W (~0)δ3(~x) = δ3(~x). But the operator (∇2
x + k2) is translation-

invariant, so we may translate the solution Wφ/4π for ~x ′ = 0 to arbitrary
~x ′,

G(~x,~x ′) =
e±ik|~x−~x ′|

4π|~x−~x ′| . (3)

We have ignored the issue of boundary conditions in this discussion. In
general, satisfying the boundary conditions determines the added solutions
of the homogeneous equation. For our purposes we will ask for outgoing
waves, so we choose the upper sign, e+ik|~x−~x ′|. Thus the solution of (1) for Ψ
is Ψ(~x) =

∫
d3x′G(~x,~x ′)s(~x ′).

We want to reexpress the Green’s function in spherical coordinates. If we
solve the Green’s function equation in spherical coordinates,(

∇2
x + k2

)
G(~x,~x ′) = −δ(~x−~x ′)

= − 1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(φ− φ′)

=

(
∂2

∂r2
+

2

r

∂

∂r
− 1

r2
L2+k2

)
G(~x,~x ′) = −δ(r−r′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗
`m(θ′, φ′)Y`m(θ, φ),



504: Lecture 11 Last Latexed: February 24, 2011 at 9:06 3

where r = |~x| and we have used the completeness relation (J3.56). If we let
G(~x,~x ′) =

∑
`m R`m(r,~x ′)Y`m(θ, φ) we have

∑
`m

(
∂2

∂r2
+

2

r

∂

∂r
−`(` + 1)

r2
+k2

)
R`m(r,~x ′)Y`m(θ, φ)

= − 1

r2
δ(r−r′)

∞∑
`=0

∑̀
m=−`

Y ∗
`m(θ′, φ′)Y`m(θ, φ),

so we see that R(r,~x ′) =
∑

` g`(r, r
′)Y ∗

`m(θ′, φ′) where(
∂2

∂r2
+

2

r

∂

∂r
− `(` + 1)

r2
+ k2

)
g`(r, r

′) = − 1

r2
δ(r − r′).

For r 6= r′ this is just the spherical Bessel equation, so the solutions are
combinations of j`(kr) and n`(kr), or better of j`(kr) and h

(1)
` := j`(kr) +

in`(kr) → (−i)`+1eikr/kr. For r < r′ we need the solution to be regular at
r = 0, so there are no n or h contributions, only j`,

g`(r, r
′) = a`(r

′)j`(kr) for r < r′,

while for r > r′ we want only outgoing waves, with e+ikr, so the solution is
pure h

(1)
` with no h

(2)
` (or j`)

g`(r, r
′) = b`(r

′)h(1)
` (kr) for r > r′.

But from (3) we see that the Green’s function is symmetric under ~x ↔ ~x ′,
so a`(r) = a`h

(1)
` (kr) and b`(r) = a`j`(kr), and we may write more generally

g`(r, r
′) = a`j`(kr<)h

(1)
` (kr>),

where r< is the smaller of r and r′ and r> is the greater.
To determine the coefficients, observe that the derivative must be discon-

tinuous, with

g′`(r = r′ + ε)− g′`(r = r′ − ε) = a`kj`(kr)h
′ (1)
` (kr)− a`kh

(1)
` (kr)j′`(kr)

=
∫ r′+ε

r′−ε

−1

r2
δ(r − r′) dr = − 1

r′ 2

The first line is ka` times the Wronskian of h
(1)
` and j`, which should be

−r−2. This agrees with the general statement that the Wronskian satisfies
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dW/dr = −P (r)W , where P (r) is the coefficient of the first order term, here
2/r. Thus we can determine a` at any point, and as

j`(x) =

√
π

2x
J`+1/2(x) →

√
π

2Γ(` + 3/2)

(
x

2

)`

,

n`(x) =

√
π

2x
N`+1/2(x) → −Γ(` + 1/2)

(
2

x

)`+1 1

2
√

π
,

h
(1)
` = j` + in` → in`,

so j`(r)h
′ (1)
` (kr)− h

(1)
` (r)j′`(kr) → i/(kr)2, and a` = ik. So all together

eik|~x−~x ′|

4π|~x−~x ′| = ik
∑
`m

j`(kr<)h
(1)
` (kr>)Y ∗

`m(θ′, φ′)Y`m(θ, φ).

So we are now ready to examine the solutions to the Helmholtz equation,

~A(~x) =
µ0

4π

∫
d3x′ ~J(~x ′)

eik|~x−~x ′|

|~x−~x ′|
= iµ0k

∑
`m

∫
d3x′j`(kr<)h

(1)
` (kr>)Y ∗

`m(θ′, φ′)Y`m(θ, φ) ~J(~x ′).

If the sources are restricted to some region |~x ′| < d, and we are asking about
positions further from the origin, r > d, then r< = r′ and r> = r, and

~A(~x) = iµ0k
∑
`m

h
(1)
` (kr)Y`m(θ, φ)

∫
d3x′j`(kr′)Y ∗

`m(θ′, φ′) ~J(~x ′).

We see that ~A has an expansion in specified modes (`, m) with the sources
only determining the coefficients of these modes. If the source region is small
compared to the wavelength, d � λ = 2π/k = 2πc/ω, we have kr′ � 1

whereever ~J(~x ′) 6= 0, so we may use the expansion j`(x) ≈ x`/(2` + 1)!!,
appropriate for x � 1. We see that the lowest ` value which contributes will
dominate.

1.1 Zones

This expression can be simplified if we consider restrictions on the relative
sizes of d, λ, and r.
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If d and r are both much smaller than λ, we are in the near zone, we

may set k = 0 while setting kj`(kr<)h
(1)
` (kr >) to −i

2`+1

r`
<

r`+1
>

. The fields are

essentially instantaneously generated by the currents and charges. If, in
addition we assume d � r, the lowest ` value will dominate.

If r � λ and r > d, the fields oscillate rapidly with h
(1)
` (kr) → (−i)`+1eikr/r,

falling off only as 1/r, typical of radiation fields, and this is called the far

or radiation zone. If we also have d � λ, kr< is small whereever ~J doesn’t
vanish, and the lowest ` mode will dominate.

We have not bothered to find Φ(~x) because the Lorenz gauge −iωΦ/c2 =

−~∇· ~A gives it in terms of ~A, except for ω = 0, for which Φ(~x) is given by the
static Coulomb expression integrated over all the charges, the electric field is
given by Coulombs law, and there is no magnetic field arising from Φ.

1.2 Electric Dipole

So, for example, if the ` = 0 term does not vanish, we may write

~A(~x) ≈ iµ0kh
(1)
0 (kr)Y00

∫
d3x′Y ∗

00
~J(~x ′) =

µ0

4π

eikr

r

∫
d3x′ ~J(~x ′),

because h
(1)
0 (x) = −ieix/x. As we are assuming all sources have an e−iωt time

dependence, and the continuity equation tells us ~∇ · ~J = −∂ρ/∂t = iωρ, we

may write1
∫

d3x′ ~J(~x ′) = −iω
∫

d3x′~x ′ρ(~x ′). The integral is just the electric
dipole moment, so

~A(~x) ≈ −iµ0ω

4π
~p

eikr

r
,

which is accurate for all r > d to lowest order in d/λ, provided the dipole
moment isn’t zero.

Quite generally,

~H =
1

µ0

~∇× ~A,

while outside the region with sources,

∂ ~D

∂t
= −iωε0

~E = ~∇× ~H =⇒ ~E =
iZ0

k
~∇× ~H,

1For any two vector functions ~A and ~B,
∫

V
Ai(~∇ · ~B) =

∑
j

∫
V

(∂j(AiBj)−Bj∂jAi) =∫
∂V

Ai( ~B · d~S)− ∫
V

~B · ~∇Ai. So
∫

V
~A(~∇ · ~B) =

∫
∂V

~A( ~B · d~S)− ∫
V

( ~B · ~∇) ~A. Let ~A = ~x ′,
~B = ~J , and with ~J vanishing at infinity, we have iω

∫
d3x′~x ′ρ(~x ′) =

∫
d3x′~x ′~∇ · ~J(~x ′) =

− ∫ d3x′( ~J · ~∇)~x ′) = − ∫ d3x′ ~J(~x ′).
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with Z0 =
√

µ0/ε0. The curl of ~pf(r) is r̂×~p ∂f/∂r, so for our electric dipole
source, we have

~H =
ck2

4π
r̂ × ~p

(
1− 1

ikr

)
eikr

r
,

and2

~E(~x) = i
Z0

k

ck2

4π
~∇× (~x× ~p)

(
1− 1

ikr

)
eikr

r2

= i
k

4πε0

[
−2p

(
1− 1

ikr

)
eikr

r2
+ ~x× (~x× ~p)

1

r

d

dr

(
1− 1

ikr

)
eikr

r2

]

= i
k

4πε0

eikr

r2

1

ikr

[
2~p(1− ikr) + ~x× (~x× ~p)

(
3

r2
− 3ik

r
− k2

)]

=
1

4πε0

eikr

r

{
−k2r̂ × (r̂ × ~p) + [3r̂(r̂ · ~p)− ~p]

(
1

r2
− ik

r

)}
.

Note the first term in ~E is perpendicular to ~x, but the second is not.
However this longitudinal term falls off as r−2, so may be neglected in the
radiation zone r � λ, where we can write

~H =
ck2

4π
r̂ × ~p

eikr

r

~E =
−k2eikr

4πε0r
r̂ × (r̂ × ~p) = −Z0r̂ × ~H




in the radiation zone.

In the near zone, that is when d < r � λ, we have

~H =
iω

4πr2
r̂ × ~p

~E =
1

4πε0r3
(3r̂(r̂ · ~p)− ~p)




in the near zone

The electric field in the near zone is just what we would have from a static
dipole of the present value at each moment, and the E field dominates the
H field in this zone.

2~∇ × (~x× ~p f(r))i =
∑

jkmq εijk∂jεkmqxmpqf(r) =
∑

j ∂jxipjf(r) − ∂jxjpif(r) =
−2pif(r)+

∑
j(xipj−xjpi)r̂jdf/dr(r), so ~∇×(~x× ~p f(r)) = −2~pf(r)+~x×(~x×~p)r−1df/dr.
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In the intermediate zone, where r is comparable to λ and kr is of order
1, all of the terms in Jackson Eq. 9.18 are comparable, and the fields have
no particularly simple approximate expression.

If we ask about the power radiated at large dis-
tances, the average power per unit solid angle is

〈P 〉
dΩ

=
r2

2
Re r̂ · ( ~E × ~H∗) ≈ Z0c

2k4

2(4π)2
|r̂ × (r̂ × ~p)|2

=
Z0c

2k4

32π2
p2 (1− cos2 θ) =

Z0c
2k4

32π2
p2 sin2 θ,

where θ is the angle between ~p and ~x. The total power
radiated is

〈P 〉 = 2π
∫ π

0
dθ sin θ

〈P 〉
dΩ

=
Z0c

2k4

16π
p2
∫ π

0
dθ sin3 θ =

Z0c
2k4

12π
p2.

1.3 The Next Order

To include the next order contributions, essential if the dipole moment van-
ishes, we look at the ` = 1 term in the expansion,

~A(1) = iµ0kh
(1)
1 (kr)

m=1∑
m=−1

Y1m(θ, φ)
∫

d3x′j1(kr′)Y ∗
1m(θ′, φ′) ~J(~x ′).

With

h
(1)
1 (x) = −eix

x

(
1 +

i

x

)
, j1(x) =

x

3

(
1 +Ox2

)
,

and
m=1∑

m=−1

Y1m(θ, φ)Y ∗
1m(θ′, φ′) =

3

4π
r̂ · r̂′,

we see that

~A(1) = iµ0k
3

4π

1

3

eikr

r

(
1 +

i

kr

) ∫
d3x′r̂ · ~x ′ ~J(~x ′).

The multipole moments involved here are tensors ∼ ~x ′ ~J(~x ′). The antisym-
metric part is the integral of the magnetization

M(~x ′) =
1

2
~x ′ × ~J(~x ′), with ~m =

∫
d3x′M(~x ′)
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the magnetic dipole moment.

r̂ × ~m =
1

2

∫
d3x′

[
(r̂ · ~J(~x ′)~x ′ − (r̂ · ~x ′) ~J(~x ′)

]
.

The symmetric piece is related to the electric quadripole moment

Qij :=
∫

d3x′
(
3x′ix

′
j − x′ 2δij

)
ρ(~x ′)

=
∫

d3x′
(
3x′ix

′
j − x′ 2δij

) −i

ω
~∇ · ~J

=
i

ω

∫
d3x′Jk(~x

′)∂′k
(
3x′ix

′
j − x′ 2δij

)

=
i

ω

∫
d3x′Jk(~x

′)
(
3δikx

′
j + 3δjkx

′
i − 2x′kδij

)

So r̂ ·Q = i
ω

∫
d3x′

(
3r̂ · ~J(~x ′)~x ′ + 3r̂ · ~x ′ ~J(~x ′)− 2~x ′ · ~J(~x ′) r̂

)
.

For completeness we need to consider a electric monopole term

ME =
∫

d3x′x′2ρ(~x ′) =
2i

ω

∫
d3x′~x ′ · ~J.

So our complete ` = 1 vector potential is

~A(1) = −i
µ0k

24π

eikr

r

(
1 +

i

kr

)
(6r̂ × ~m + iωr̂ ·Q + iωME r̂).

Let us evaluate ~H and ~E only to leading order in 1/r, so we need only

consider the derivative acting on eikr, and needn’t worry about ~∇ × r̂. We
can also drop the i/kr term.

Then

~H (1) =
1

µ0

~∇× ~A(1) =
k2

24π

eikr

r
r̂ × (6r̂ × ~m + iωr̂ ·Q + iωME r̂).

The electric monopole contribution vanishes due to r̂× r̂ = 0. The magnetic
dipole contributes

~HMD =
k2

4π

eikr

r
r̂ × (r̂ × ~m),

~EMD =
iZ0

k
~∇× ~HMD = −k2Z0

4π

eikr

r
r̂ × (r̂ × (r̂ × ~m))

=
k2Z0

4π

eikr

r
r̂ × ~m.
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These are of the same form as for the electric dipole, but with ~E and ~H
interchanged. The radiation pattern is the same, but the polarization has
~E ⊥ ~m here, while ~E lies in the plane including r̂ and ~p for the electric
dipole.

One might be tempted to think the electric quadripole also vanishes,
as it involves r̂ × (r̂ ·Q), and Q is symmetric. But that is incorrect: in
r̂× (r̂ ·Q) =

∑
εijkr̂iQj`r̂`êk, the summands are symmetric under i ↔ ` and

antisymmetric under i ↔ j, but that does not make things vanish. Jackson
defines the vector ~Q(~n) :=

∑
Qijnj êi, and then we have r̂× ~Q(r̂). Then again

keeping only 1/r terms,

~HEQ =
ick3

24π

eikr

r
r̂ × ~Q(r̂)

~EEQ =
−iZ0ck

3

24π

eikr

r
r̂ ×

(
r̂ × ~Q(r̂)

)
.

Power radiated

Probably the most interesting thing one might ask is how much power is
radiated, and in which directions, as we did for the electric dipole.

For an electric quadripole, |Q| is a sym-
metric real traceless tensor, so we could rotate
the coordinate system so that it will be diag-
onal. If we take an axially symmetric case,
with Qzz = −2Qxx > 0.
The average power per unit solid angle is

〈P 〉
dΩ

=
r2

2
Re r̂ · ( ~E × ~H∗)

∝ |r̂ × (r̂ ×Q(r̂)) |2

as shown.


