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Physics 504, Lecture 7
Feb 14, 2011

1 Energy Flow, Density and Attenuation

We have seen that there are discrete modes λ for electromagnetic waves with
~E, ~B ∝ eikz−iωt corresponding, for real ω and k, to waves travelling in the
z direction, with a dispersion relation k2 = µεω2 − γ2

λ, with discrete values
of γλ for TE or TM modes, or γ = 0 for TEM modes. This relation for
TE and TM modes are of the same form as for the high-frequency behavior
of dielectrics, (J 7.61) with γ/

√
µε playing the roll of the plasma frequency.

The phase velocity is

vp = ω/k =
1√
µε

1√
1−

(
ωλ

ω

)2
>

1√
µε
,

greater than the velocity in an infinite medium (R3), as for all travelling
waves we have ω > ωλ.

On the other hand, as k2 − µεω2 = constant, we have kdk = µεωdω, so
the group velocity

vg =
dω

dk
=

1

µε

k

ω
=

1

µε

1

vp

<
1√
µε
,

less than the infinite medium velocity.

1.1 Energy flow and density

These calculations assumed the walls had infinite conductivity, but generally
the walls are good but not perfect conductors,. Then there will be eddy cur-
rents and energy loss in the walls, and a right-moving wave will be attenuated
in the z direction, so k will develop a small positive imaginary part. We may
estimate this attenuation constant by comparing the energy travelling past
z to the energy per unit length lost at z. The energy flux is given by the z
component of the Poynting vector, so the power transmitted down the pipe
is P =

∫
A ẑ · ~S.

Up to now we have worked with quantities linear in ~E or ~H so the proviso
that the real fields are just the real parts of our complex fields could be swept
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under the rug. But the Poynting vector ~S = ~Ephys × ~Hphys is quadratic.
Our wave propagating in the z direction is actually

~Ephys(x, y, z, t) =
1

2

(
~E(x, y, k, ω)eikz−iωt + ~E∗(x, y, k, ω)e−ikz+iωt

)
.

So when we talk in terms of a wave with a single k and ω,

~Ephys(x, y, z, t) = Re ~E(x, y, z, t) = Re
(
~E(x, y, k, ω)eikz−iωt

)
,

we have

~Sphys = ~Ephys × ~Hphys

=
1

4

((
~E(x, y, k, ω)eikz−iωt + ~E∗(x, y, k, ω)e−ikz+iωt

)
×

(
~H(x, y, k, ω)eikz−iωt + ~H∗(x, y, k, ω)e−ikz+iωt

))

=
1

4

(
~E(x, y, k, ω)× ~H(x, y, k, ω)e2ikz−2iωt

+ ~E∗(x, y, k, ω)× ~H(x, y, k, ω) + ~E(x, y, k, ω)× ~H∗(x, y, k, ω)

+ ~E∗(x, y, k, ω)× ~H∗(x, y, k, ω)e−2ikz+2iωt

)

The first and last term are rapidly oscillating, so if we are interested in the
average of ~S, we have

〈~S〉 =
1

4

(
~E∗(x, y, k, ω)× ~H(x, y, k, ω) + ~E(x, y, k, ω)× ~H∗(x, y, k, ω)

)

=
1

2
Re

(
~E(x, y, k, ω)× ~H∗(x, y, k, ω)

)

The power transmitted down the waveguide is the integral of the z component
of this, so only the transverse components of ~E and ~H are needed, and these
are given by

TM: Ez = ψ, ~Et = i
k

γ2
λ

~∇tψ, ~Ht = i
εω

γ2
λ

ẑ × ~∇tψ, ψ|S = 0

TE: Hz = ψ, ~Ht = i
k

γ2
λ

~∇tψ, ~Et = −iµω
γ2

λ

ẑ × ~∇tψ,
∂ψ

∂n
|S = 0
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with (∇2
t + γ2

λ)ψ = 0. Thus the average transmitted power is

P = ẑ · Re
∫

A
S =

ωk

2γ4
λ

∫
A
|~∇tψ|2 ·

{
ε (for TM)

µ (for TE)

The integral

∫
A
|~∇tψ|2 =

∮
S
ψ∗
∂ψ

∂n
−
∫

A
ψ∗∇2

tψ = 0 + γ2
λ

∫
A
ψ∗ψ.

With ωλ := γλ/
√
µε, k = ω

√
µε
√

1− ω2
λ/ω

2, this is

P =
1

2
√
µε

(
ω

ωλ

)2
√

1− ω2
λ

ω2

∫
A
ψ∗ψ ·

{
ε (for TM)

µ (for TE)

We might also calculate the energy per unit length in the waveguide,
U =

∫
A u = 1

2

∫
A

(
~Ephys · ~Dphys + ~Bphys · ~Hphys

)
, so

〈U〉 =
1

4

∫
A
ε| ~E|2 + µ| ~H|2

Here the longitudinal (ẑ) components enter as well as the transverse ones.
For the TM mode, we have

| ~H|2 = | ~Ht|2 =

(
εω

γ2
λ

)2 ∣∣∣~∇tψ
∣∣∣2

| ~E|2 = | ~Et|2 + | ~Ez|2 =

(
k

γ2
λ

)2 ∣∣∣~∇tψ
∣∣∣2 + |Ez|2

As Ez = ψ,

〈U〉 =
1

4


ε
(
k2

γ4
λ

∫
A
|~∇tψ|2 +

∫
A
|ψ|2

)
+ µ

(
εω

γ2
λ

)2 ∫
A
|~∇tψ|2




=
ε

2

µεω2

γ2
λ

∫
A
|ψ|2 =

ε

2

ω2

ω2
λ

∫
A
|ψ|2 (TM mode).

Similarly for the TE mode, we need ~Ht = ikγ−2
λ
~∇tψ and Hz = ψ

∫
A
| ~H|2 =

k2

γ4
λ

∫
A

∣∣∣~∇ψ∣∣∣2 +
∫

A
|ψ|2 =

(
k2

γ2
λ

+ 1

)∫
A
|ψ|2 =

ω2

ω2
λ

∫
A
|ψ|2
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while ∫
A
| ~E|2 =

µ2ω2

γ4
λ

∫
A
|~∇ψ|2 =

µ

ε

ω2

ω2
λ

∫
A
|ψ|2,

so

〈U〉 =
µ

2

ω2

ω2
λ

∫
A
|ψ|2 (TE mode).

Note that in either case,

〈P 〉
〈U〉 =

1√
εµ

√
1− ω2

λ

ω2
= vg.

As we might expect, the energy flux is the energy density times the group
velocity.

1.2 Attenuation

We now turn to the major effect of the finiteness of the conductivity σ in the
walls of the waveguide. We saw in section 8.1 that the power loss per unit
area of interface is given by

dPloss
dA

=
1

2δσ

∣∣∣ ~H‖
∣∣∣2 ,

where δ =
√

2/µcσω is the skin depth. This gives a loss of power per unit
length proportional to the square of the fields and therefore to the power, so
the power transmitted along the waveguide will fall off exponentially. This
can be described by giving k a small imaginary part, Im k = βλ, giving a
factor e−βλz to each of the fields, and e−2βλz to the power flow. Thus

dP

dz
= −2βλP (z) = − 1

2σδ

∮
Γ

∣∣∣n̂× ~H
∣∣∣2 d`.

For the TM mode,

n̂× ~H = n̂× ~Ht =
iεω

γ2
λ

n̂× (ẑ × ~∇tψ) =
iεω

γ2
λ

(
n̂ · ~∇tψ

)
ẑ

so

βλ =
1

4σδ

(
εω

γ2
λ

)2 ∫
Γ

∣∣∣∣∣∂ψ∂n
∣∣∣∣∣
2/

ωkε

2γ4
λ

∫
A

∣∣∣~∇ψ∣∣∣2 =
ωε

2kσδ

∫
Γ

∣∣∣∣∣∂ψ∂n
∣∣∣∣∣
2/∫

A

∣∣∣~∇ψ∣∣∣2
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Though we don’t know the ratio of the integrals, they differ only in that
numerator takes only the square of one of the two components of ~∇ψ, and
integrates it over the circumference rather than the area. Furthermore the
ratio of these integrals depends only on the mode λ and not on the frequency
ω of the transmitted wave. Let us write

∫
Γ

∣∣∣∣∣∂ψ∂n
∣∣∣∣∣
2/∫

A

∣∣∣~∇ψ∣∣∣2 =
C

A
ξλ,

where C and A are the circumference and the area of the wave guide’s
cross section, and ξλ is a dimensionless number expected to be of order-of-
magnitude 1. Let us display the frequency dependance explicitly by writing

δ = δλ
√
ωλ/ω, k = ω

√
µε
√

1− ω2
λ/ω

2. Thus

βλ =

√
ε

µ

1

σδλ

C

2A

√
ω/ωλ√

1− ω2
λ

ω2

ξλ.

For the TE mode, n̂× ~H = n̂× ~Ht + n̂× ẑHz so

∣∣∣n̂× ~H
∣∣∣2 =

∣∣∣n̂× ~Ht

∣∣∣2 + |Hz|2 =

(
k

γ2
λ

)2 ∣∣∣n̂× ~∇tψ
∣∣∣2 + |ψ|2.

Again let us write

∫
Γ

∣∣∣n̂× ~∇tψ
∣∣∣2/∫

A

∣∣∣~∇ψ∣∣∣2 =
C

A
ξλ,

∫
Γ
|ψ|2

/∫
A
|ψ|2 =

C

A
ζλ.

where ζλ is another dimensionless number of order one, and ξλ is somewhat
differently defined from the TM case, but still of order one. Then

∫
Γ

∣∣∣n̂× ~∇tψ
∣∣∣2/∫

A
|ψ|2 = γ2

λ

C

A
ξλ.

The attenuation coefficient is

βλ =

√
ε

µ

1

σδλ

C

2A

√
ω/ωλ√

1− ω2
λ

ω2

[
ξλ

(
1− ω2

λ

ω2

)
+ ζλ

(
ωλ

ω

)2
]
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Then for both modes we can write the attenuation coefficient as

βλ =

√
ε

µ

1

σδλ

C

2A

√
ω/ωλ√

1− ω2
λ

ω2

[
ξλ + ηλ

(
ωλ

ω

)2
]
,

where ηλ = ζλ − ξλ for the TE mode. Note that for the TM mode ηλ = 0.
The attenuation coefficient calculated in this approximation diverges as

ω → ωλ, and is it is proportional to
√
ω for large ω, so it has a minimum for

some small multiple of ωλ,
√

3 for the TM modes, but dependent on ηλ/ξλ,
and hence the shape of the waveguide, for TE modes.

We will skip section 8.6.

1.3 Attenuation for Circular Cylinder

We have seen that the TE and TM modes in a circular wave guide are
determined by

ψTE

mn = Jm(x′mnρ/r) cosmφ, ψTM

mn = Jm(xmnρ/r) cosmφ,

where xmn and x′mn are the n’th zeros of Jm(x) and J ′m(x) respectively. The
cutoff frequencies are given in terms of

γTE

mn = x′mn/r, γTM

mn = xmn/r.

To evaluate the attenuation coeffieients, we need
∫
A ψ

2, and

∫
Γ

∣∣∣∣∣∂ψ∂n
∣∣∣∣∣
2

= r
∫ 2π

0
dφγ2J ′ 2m (γr) cos2 φ = πrγ2J ′ 2m (γr)(1 + δm0),

which we need only for TM modes. For TE modes we need

∫
Γ
|ψ|2 = rJ2

m(x′mn)
∫ 2π

0
cos2mφdφ = πrJ2

m(x′mn)(1 + δm0),

∫
Γ
|n̂×∇tψ|2 = r

∫ 2π

0
dφ

(
∂ψ

r∂φ

)2

=
1

r
J2

m(x′mn)
∫ 2π

0
(m sinmφ)2

=
π

r
J2

m(x′mn)(1 + δm0),
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The only integral that requires more than table look-up is∫
A
ψ2 =

∫ r

0
ρdρJ2

m(γρ)
∫ 2π

0
dφ cos2(mφ) = π

∫ r

0
ρdρJ2

m(γρ)(1 + δm0).

The integral is connected to the orthnormalization properties of Bessel func-
tions, and is1: ∫ 1

0
[Jm (xmnu)]

2 udu =
1

2
J2

m+1(xmn)

∫ 1

0
[Jm (x′mnu)]

2
udu =

1

2

(
1− m2

(x′mn)2

)
J2

m(x′mn)

Thus for the TM modes, we have

C

A
ξTM

mn =
∫
Γ

∣∣∣∣∣∂ψ∂n
∣∣∣∣∣
2/

(γTM

mn)2
∫

A
ψ2 =

πrJ ′ 2m (xmn)
πr2

2
J2

m+1(xmn)
=

2

r

J ′ 2m (xmn)

J2
m+1(xmn)

In fact, there is an identity (see footnote again) J ′m(x) = m
x
Jm(x)− Jm+1(x),

which means, as Jm(xmn) = 0, that J ′m(xmn) = −Jm+1(xmn), C
A
ξTM
mn = 2/r,

and

βTM

mn =

√
ε

µ

1

rσδλ

√
ω/ωλ√

1− ω2
λ

ω2

for all TM modes.
For the TE modes,

C

A
ξTE

mn =
∫
Γ
|n̂×∇tψ|2

/
(γTE

mn)2
∫

A
ψ2 =

m2πJ2
m(x′mn)/r

π(γTE
mn)2r2 1

2
(1− (m/x′mn)2) J2

m(x′mn)

=
2m2

r(x′ 2mn −m2)
.

C

A
ζTE

mn =
∫
Γ
|ψ|2

/∫
A
ψ2 =

πrJ2
m(x′mn)

π
2

(1− (m/(x′mn)2))J2
m(x′mn)

=
2x′ 2mn

r (x′ 2mn −m2)
.

So the attenuation coefficient is

βTE

mn =

√
ε

µ

1

rσδλ

√
ω/ωλ√

1− ω2
λ

ω2

[
1

(x′ 2mn −m2)
+
(
ωλ

ω

)2
]
.

1Arfken 11.50, problems 11.2.2 and 11.2.3 (3rd Ed.) or see
http://www.physics.rutgers.edu/grad/504/lects/bessel.pdf.
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For TM modes, ωTM
mn = xmnc/r, where c = 1/

√
µε is the speed of light, For

copper, the resistivity is ρ = σ−1 = 1.7 × 10−8 Ω · m, and we may take

the permeability to be essentially µ0. Also ωλ = γλc. δλ =
√

2/µcσωλ

ε0 = 8.854× 10−12 C2/N ·m2, so√
ε

µ

1

σδλ
=

√
cε0γλ

2σ
= 4.75×10−6√γλ

√
m

s

C2

N ·m2
Ωm = 4.75×10−6 m1/2·

√
xmn

r
.

The units combine to m1/2 as 1 Ω = 1V/A = 1(J/C)/(C/s) = Nms/C2.
In comparison to the TM12 mode for a square of side a, we see that βTM =

a
2r
βutTM

12 . As the cutoff frequencies are 2.4048c/r and
√

5πc/a respectively,

we see that the comparable dimensions are r = (2.4048/
√

5π)a = 0.342a,
much smaller, and then a/2r = 1.46, so the smaller pipe does have faster
attenuation.

For TE modes, there is an extra factor of

1

(x′ 2mn −m2)
+
(
ωλ

ω

)2

.

which for the lowest mode is 0.4185 + (ωλ/ω)2 compared to 0.5 + (ωλ/ω)2

for the square. But the cutoff frequencies are now 1.841c/r and
√

2πc/a, so
comparable dimensions have r = 1.841a/

√
2π = 0.414a.

1.4 Resonant Cavities

We have considered wave guides uniformly extended in the z direction, infi-
nite in both directions, and found that there are modes λ of propagation with
arbitrary definite wavenumber k and frequency ω given by µεω2 = k2 + γ2

λ.
Thus for a particular λ and ω > ωλ, there are two possible waves, a right-
moving and a left-moving one. Superposition will then give us standing
waves suitable to describe a resonant cavity made by placing flat conducting
end-caps on the wave guide, say at z = 0 and z = d.

Thus quite generally each field will be a superposition of wave with k = |k|
and one with k = −|k|. For the TM case, the determining field is

Ez =
(
ψ(k)eikz + ψ(−k)e−ikz

)
e−iωt,

In calculating the transverse field, the piece coming from ψ(−k) needs the
minus in 8.33, so

~Et = i
k

γ2
λ

(
~∇tψ

(k)eikz − ~∇tψ
(−k)e−ikz

)
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This is a field parallel to the conductor surface at z = 0 and z = d, so
must vanish (or be very small) there for a perfect (good) conductor endcap.

Vanishing of ~Et at z = 0 implies ψ(k) = ψ(−k), and then ψ(k)(2i sin kd) = 0
from z = d. As we don’t want ψ = 0, we see that k = pπ/d with p an integer,

Ez = cos
(
pπz

d

)
ψ(x, y)

~Et = − pπ

dγ2
λ

sin
(
pπz

d

)
~∇tψ

~Ht = i
εω

γ2
λ

cos
(
pπz

d

)
ẑ × ~∇tψ




{
for TM modes

with p ∈ Z

where in using 8.26, we recall that k takes a minus sign for the part of the
field flowing leftward.

For TE modes, the determining field is Hz, which must vanish at z = 0
and z = d if the endcaps are perfect conductors and exclude magnetic fields,
as n̂ · ~B is continuous at the boundary. Thus

Hz = sin
(
pπz

d

)
ψ(x, y)

~Ht =
pπ

dγ2
λ

cos
(
pπz

d

)
~∇tψ

~Et = −iωµ
γ2

λ

sin
(
pπz

d

)
ẑ × ~∇tψ




{
for TE modes

with p ∈ Z, p 6= 0.
.

As for the waveguide, the values of γλ depend on the mode (TE or TM)
and the cross section, which often means two indices. For example, for a
circular guide, there is an angular index m and another index n specifying
which root of Jm (for TM) or of dJ(x)/dx (for TE). With xmn the n’th zero
of Jm(x) (not counting x = 0) and x′mn the n’th zero of dJ

dx
(x), we have

γmn = xmn/R (TM modes) or γmn = x′mn/R (TE modes). As µεω2 = k2 +γ2

we have

ωmnp =
1√
µε

√
x2

mn

R2
+
p2π2

d2
with p ≥ 0 for TM modes,

ωmnp =
1√
µε

√
x′ 2mn

R2
+
p2π2

d2
with p > 0 for TE modes.
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The lowest TM mode is thus ω010 = x01/
√
µεR = 2.405/

√
µεR, which is

independent of the length d of the cavity. As p cannot be zero for TE modes,
(or the determining field Hz = 0) the lowest TE mode is

ω111 =
1.841√
µεR

√
1 + 2.912

R2

d2
,

(π/1.841 = 2.912). This mode has the advantage that its frequency can be
tuned by moving a piston back and forth, changing d.

This calculation has assumed no power losses, but of course a real cavity
will generally have walls of finite conductivity, and power will be lost as we
discussed earlier in the walls, not only along the z direction but also in the
endcaps. Again the power lost will be proportional to the energy stored in
the cavity. Let Q be the 2π times the energy stored U divided by the energy
lost in one cycle ∆U (in time dt = 2π/ω), so Q = 2π U

∆U
. Assuming Q� 1,

the energy loss per cycle will be small compared to U , with ∆U ≈ −2π
ω

dU
dt

,
and the energy will decay exponentially, with

U(t) = U(0)e−ωt/Q, Q = ωU/|dU/dt|.

This means that if at time zero something excites an electromagnetic field
in the cavity, the fields will have a time dependence2

E(t) = E0e
−iω0(1−i/2Q)tΘ(t),

where Θ(t) = 1 for t ≥ 0 and zero earlier. Thus the frequency response
to what is essentially a delta-function excitation (and therefore equal for all
frequencies) is

E(ω) =
1√
2π

∫ ∞

−∞
E(t)eiωtdt =

1√
2π
E0

∫ ∞

0
ei(ω−ω0−iΓ/2)tdt

=
iE0√
2π

1

ω − ω0 − iΓ/2
,

2My ω0 is what Jackson calls ω0 + ∆ω, with his ω0 the resonant frequency of the
undamped cavity. The change in resonant frequency due to damping is generally small, a
fractional change of the order 1/Q, and I will ignore that effect.
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where Γ := ω0/Q. This response determines how
the cavity will respond to excitations of any fre-
quency, with the energy absorbed proportional to

|E(ω)|2 ∝ 1

(ω − ω0)2 + Γ2/4
.

This resonance shape is the form of response the
simplest resonant structures have in response to a

Γ

ω
ω

0
100 200 300

stimulus of frequency ω, as for example the ratio of the energy of damped
harmonic oscillator to the driving force, or the resonant absorption of light
by an atomic transition. In nuclear physics this is called the Breit-Wigner
amplitude. Γ, mistakenly called the half-width, is actually the full width
of the region with a response at least half the maximum value, which is
ω ∈ [ω0 − Γ/2, ω0 + Γ/2].

The value of Γ for a resonant cavity can be calculated as for the attenu-
ation of a waveguide. That is, we compare the power lost in the walls to the
energy in the electromagnetic fields in the cavity. This is done in Jackson,
pp 373-374, based on the same tools as used in calculating the attenuation
of the waveguide, but I will skip it.

2 Earth and Ionosphere

An interesting resonant cavity is formed by the surface of the Earth and the
ionosphere, a layer of ionized gas starting about 100 km up, which provides
sufficient conductivity to reflect radio waves. But this cavity is not a cylinder
with endcaps, but clearly calls out for spherical coordinates. As you also need
an introduction to other curvilinear coordinate systems to do your homework,
and as you have told me you have not learned about these, let us digress
to discuss curvilinear coordinates in general, orthogonal coordinates more
particularly, and finally spherical coordinates.


