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1 Lagrangian and Hamiltonian

In the first three pages of Jackson we learned the basic laws of electromag-
netism: four Maxwell equations and one Lorentz force, and those managed to
keep us busy for the next 500 pages. Now we have become more sophisticated,
using four-dimensional notation, and we have reduced Maxwell’s equations
to 2, so we have a “complete” description of electromagnetism in only three
equations. Do we really need to get any more sophisticated, and ask if we
can rewrite things in Lagrangian formulation?

We might have asked the same question about Newtonian mechanics —
after all, Lagrangian mechanics is nothing but a rewriting of F = ma, specify-
ing lagrangians instead of force laws. But Lagrange invented his formulation
for a reason— it helped him with complex solar system dynamics, and we
would have a hard time doing quantum mechanics without the Hamiltonian.
Also, these elegant reformulations are pretty! And finally, we will need a
lagrangian formulation to make quantum field theory, and to develop con-
cepts of gauge fields that are generalizable to non-Abelian field theories to
give us the Standard Model of particle physics, which includes the gauge field
theories called the Electro-Weak theory and Quantum Chromodynamics.

So, whatever the motivation, let us turn to the Lagrangian formulation of
mechanics, starting with a free point particle. Recall that the way Hamilton’s
principle works is that for each conceivable motion from some specific initial
position at an initial time to some specific final position at some final time, we
associate an action, and the real motion is a path for which the action is an
extremum, with small perturbations in the path ~x(t) producing no change in
the action (to first order in the function δx(t)). Notice that this formulation
treats space and time on the same footing, so it is a good starting point for
a relativistic theory.

We usually write the action as an integral of the Lagrangian over time

A =
∫

Ldt,

which sort of messes up the obvious relativity by picking out time. We
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expect the action to be a relativistic invariant, as its variation determines
the physical path which must be physically the same regardless of which
observer is describing it1. I will do things a bit differently from Jackson
— let’s begin by asking what is the simplest action that could describe a
point particle? It is a functional of the path, and should be invariant, so the
simplest possibility is the invariant length of the path, that is, the proper
time. To get the units right we will multiply by −mc2, so let’s try

A = −mc2
∫

dτ = −mc
∫ √

dxµdxµ = −mc
∫ √

UαUα dτ

= −mc2
∫ √

1− ~u 2

c2
dt.

So the Lagrangian is

L(~x, ~u, t) = − mc2
/

γ(~u) = −mc2

√
1− ~u 2

c2
,

and we should note that it is not an invariant, but instead transforms so that
Ldt is an invariant.

In three dimensional language this Lagrangian gives us a canonical mo-
mentum

~Pi =
∂L

∂ui

=
mui√
1− ~u 2

c2

= (~p )i,

the same momentum we already associated with a relativistic particle. It
also gives us, from the Euler-Lagrange equations

d

dt

∂L

∂ui
− ∂L

∂xi
= 0,

the equation pi = constant, as xi is an ignorable coordinate. This is, of
course, the correct equation of motion for a free particle.

Shall we be a bit more ambitious? We would like to have electromag-
netism enter. If our particle has a charge q, what invariant could we add
to γL to produce an interaction with electromagnetism? The Lagrangian is
supposed to depend only on positions and velocities, and if we want a rel-
ativistic (and translation) invariant Lagrangian, it can depend on position

1This is not a totally convincing argument, and in fact we are being a bit too demanding
here, but the basic idea is right: A should be a scalar.
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only through the value of the electromagnetic field at the point the particle
is at. So the only quantity the particle can provide is the four-velocity Uα,
which needs to be dotted into a vector. Electromagnetism provides only the
4-vector Aα and the field-strength F αβ. We can’t use UαUβF αβ because it
is identically zero, so if we want an interaction linear in the fields our only
choice is

γLint = −q

c
UαAα, =⇒ Lint = −qΦ +

q

c
~u · ~A.

The first term looks like the right negative of the potential energy (recall L is
often T −V ) for the electrostatic field. If we now consider the full lagrangian

L(~x, ~u, t) = −mc2

√
1− ~u 2

c2
+

q

c
~u · ~A(~x, t)− qΦ(~x, t),

the canonical momentum becomes

~P = ∂L/∂~u =
m~u√
1− ~u 2

c2

+
q

c
~A(~x, t) = ~p +

q

c
~A,

so the canonical momentum is not the ordinary momentum ~p = mγ~u, but
has an extra piece proportional to the vector potential. The equations of
motion2 are now

d

dt

∂L

∂ui︸︷︷︸
Pi

− ∂L

∂xi

=
dpi

dt
+

q

c

d

dt
~Ai︸ ︷︷ ︸(

∂Ai

∂t
+ uj∂jAi

)
−q

c
uj∂iAj + q∂iΦ

=
dpi

dt
+

q

c

∂ ~Ai

∂t
+ q∂iΦ +

q

c
(uj∂jAi − uj∂iAj)

= 0 =


d~p

dt
+

q

c

d ~A

dt
+ q~∇Φ− q

c
~u×

(
~∇× ~A

)
i

so
d~p

dt
= q ~E +

q

c
~u× ~B

so we see that this Lagrangian gives us the correct Lorentz force equation.

2Note all vectors and indices here are three dimensional, without distinction of upper
and lower indices. See footnote in section 1.2 for conversion to 4-D.
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What is the Hamiltonian? H = ~P · ~u− L, but reexpressed in terms of ~P
rather than ~u. As

~u = ~p/mγ(u) =
~p

m

√
1− u2/c2 =⇒ ~u =

c~p√
p2 + m2c2

,

and mγ(u) =
√

p2 + m2c2/c. Then we need to substitute ~p → ~P − q ~A/c.
Thus

H =
~P ·

(
~P − q ~A/c

)
+ m2c2

mγ(u)
− q

cmγ(u)

(
~P − q ~A/c

)
· ~A + qΦ

=

(
~P − q ~A/c

)2
+ m2c2

mγ(u)
+ qΦ =

√
(c ~P − q ~A)2 + m2c4 + qΦ.

Note H is the total energy, the kinetic energy p0c + eΦ, so this just verifies
(p0)2 − ~p 2 = m2c2.

1.1 Adiabatic Invariance of Flux Through Particle Or-
bits

Before we continue with more formal developments of the Lagrangian and
Hamiltonian presentations of electromagnetism, let us make use of the canon-
ical momentum we have just found. From our mechanics course, we recall
that if a system is such that it is a slowly varying perturbation on an in-
tegrable system, and if the motion in an action-angle pair is cyclic in the
unperturbed system, the action will be approximately invariant, even over
times where the motion changes considerably.

The application here is that the motion perpendicular to a uniform static
magnetic field is cyclic, so the action J =

∮ ~P⊥ · d~r⊥ is an invariant. We
need to use the canonical momentum ~P = ~p+(q/c) ~A here, rather than just
~p = mγ~v. So the action is

J =
∮

mγ~v⊥ · d~r⊥ +
q

c

∮
~A · d~r.

As the motion is a circle3 with radius a, with ~v⊥ = −~ωB × ~r, the first term
is − ∫ 2π

0 mγωBa2dθ = −2πmγωBa2. As mγ~ωB = q ~B/c, this is just −2qΦB/c,

3Signs here are a bit problematic. The usual description of a particle rotating about an
axis with angular velocity ~ω has ~v = ~ω×~r, and acceleration ~a = ~ω×~v = ~ω×(~ω×~r) = −ω2~r.
Notice, however, that (12.38) is the reverse of that, so ω = −ωB. This accounts for the
negative sign in ~v⊥ = −~ωB × ~r.
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where ΦB is the magnetic flux through the orbit. As Stokes theorem tells us∮ ~A · d~r =
∫
S

~∇× ~A =
∫
S ~n · ~B, the second term is just qΦB/c, so

−J =
q

c
ΦB =

q

c
Bπa2 = π

c

q

p2
⊥

B
,

and each of these expressions can be used as an approximate invariant if ~B
varies slowly, compared to the gyroradius of the particle’s motion.

For motion in a static purely magnetic field the speed is constant, and so
is γ, but we see that the transverse speed is proportional to the square root
of the magnetic field. Of course the constant speed squared is v2

‖ + v2
⊥, so if

the particle drifts along a field line into a region of stronger magnetic field,
its v⊥ can grow until it consumes all the available speed, which means the
motion along the field line must stop and
reverse itself. This is called a magnetic
mirror. This effect can be understood di-
rectly in terms of the Lorentz force by not-
ing that, because ~B is divergenceless, if

B
v

F

the field is getting stronger the field lines are converging, which means they
have a radial component which produces a force on the circling charged
particles which opposes their drift into this region.

1.2 Covariant description

Let us return to discussing the Lagrangian formalism. For the free particle
our action could be described in completely covariant language as the proper
time of the path taken. If we choose an arbitrary parameterization along the
path, so xµ(λ) is a path through spacetime, the infinitesimal proper time is

1

c

√
ηµνdxµdxν =

1

c

√
ηµν

dxµ

dλ

dxν

dλ
dλ,

so we can write the action as

A = −mc
∫ √

ηµν
dxµ

dλ

dxν

dλ
dλ.

We can now look for an extremal path xµ(λ) in the usual way, with λ taking
the role usually taken by time, and get the Euler Lagrange equation

d

dλ

∂L

∂ ∂xµ

∂λ

=
∂L

∂xµ
= 0,
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as xµ is an ignorable coordinate. Evaluating the derivative in the left hand
side, we find

d

dλ


 ηµν

dxν

dλ√
ηµν

dxµ

dλ
dxν

dλ


 = 0,

or
dxµ

dλ
= Cµ

√
ηµν

dxµ

dλ

dxν

dλ
.

This equation determines less than meets the eye. It appears to be four
differential equations determining the four function xµ(λ). But, in addition
to introducing four arbitary constants of integration, Cµ, in fact it determines
only three independent functions of λ, as we can see from contracting it with
itself. One equation is

ηµν
dxµ

dλ

dxν

dλ
= C2ηµν

dxµ

dλ

dxν

dλ
,

which gives us only that C2 = 1 and not a differential equation helping to
determine xµ as a function of λ.

This lack of a deterministic equation should not be surprising if we recog-
nize that the length of the path (the proper time) is completely independent
of how the path is parameterized. The physics of xµ(λ) is no different from
the physics of xµ(σ(λ)), as long as σ is a monotonic function of λ. This
inability to determine the future is a form of gauge invariance, though not
the one we are used to (and will further discuss) of electrodynamics. But it
is not a serious issue, for we can choose to take the proper time along the
path as our parameter. Then ηµν

dxµ

dτ
dxν

dτ
= c2, and our equation of motion is

dxµ

dτ
=

1

m
pµ = constant,

as it should be.
What do we do about the contribution of Lint to the action,

Aint =
∫ −q

c

dxµ

dτ
Aµ

1

γ
dt =

∫ −q

c

dxµ

dτ
Aµ dτ =

∫ −q

c
Aτdxµ ?

The last expression makes it clear — this involves completely covariant quan-
tities. But to use the Euler Lagrange equations we go back to the penultimate
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expression, and write the equivalent of a Lagrangian for a covariant expres-
sion,

L̃ = −mc

√
ηαβ

∂xα

∂λ

∂xβ

∂λ
− q

c
Aα

∂xα

∂λ

with A =
∫

L̃dλ. In looking at the Euler-Lagrange equations we need to recall
that Aµ is a function of position, so again d/dτ of it is a stream derivative,
so

d

dτ
Aµ = Uα ∂Aµ

∂xα
.

Thus the equations corresponding to Euler-Lagrange give

d

dτ

∂

∂Uµ

(
−mc

√
ηνρUνUρ − q

c
UνAν

)
=

∂

∂xµ

(
−mc

√
ηνρUνUρ − q

c
UνAν

)

−m
d

dτ
Uµ − q

c
Uν ∂Aµ

∂xν
= −q

c
Uν ∂Aν

∂xµ
.

In the second line we imposed (after taking the derivative) the constraint
U2 = c2. Now

m
d

dτ
Uµ =

q

c
Uν

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
=

q

c
UνFµν , (1)

the correct Lorentz force.
Note that the four dimensional canonical momentum can be defined as4

Pα = − ∂L̃

∂∂xα

∂λ

= mUα +
q

c
Aα,

where we have required our parameter λ to be c times the proper time.
Notice that we now have(

Pα − q

c
Aα

)(
P α − q

c
Aα
)

= m2UαUα = m2c2.

4Why the minus sign? In deriving the Lorentz force earlier, we used 3-D notation with
ui = (~u)i, but as part of the 4-vector U , Uα = (γ, γui) but Uα = (γ,−γui), Ui = −ui.
For covariance, when we differentiate L with respect to contravariant Uα, we need to get
the covariant

Pα = (E/c,−~P ) ∝ ∂L

∂Uα
.

To get the sign right for the spatial components, we need the proportionality constant to
be −1.

504: Lecture 16 Last Latexed: March 26, 2010 at 11:38 8

This is one example of the minimum substitution principle, which states that
electromagnetic interactions of other objects can be obtained from replacing
pα of the theory without electromagnetic interactions with pα − (q/c)Aα

everywhere.

1.3 Action for the Electromagnetic Fields

We have written a Lagrangian which determines the dynamics of charged par-
ticles in the presence of a predetermined electromagnetic field, but of course
this course has been devoted to a study of the mutual interactions of charged
particles and electromagnetic fields. The Lorentz force and Maxwell’s equa-
tions form a coupled set of equations which determine the evolution of both
the particles and the fields. We need a Lagrangian that does both as well.

What will such a Lagrangian depend on? The fields are degrees of freedom
at every point of space (-time). So we need the lagrangian formulation of a
continuum5, or field, where the discrete variables qi are replaced by fields,
generally some set of φi(~x, t), and the velocities are replaced by ∂µφi. Rather
than a sum over discrete degrees of freedom, the Lagrangian becomes an
integral of a Lagrangian density L over space, and the action becomes its
integral over space-time. Even for nonrelativistic physics the space and time
derivatives enter the same way, and the Euler-Lagrange equations become

∂µ
∂L

∂(∂φi/∂xµ)
− ∂L

∂φi
= 0.

What are our fundamental fields? A lagrangian should depend on the
fields φi and their first derivatives ∂µφi, and will give equations of motion with
second order derivatives. Maxwell’s equations involve only first derivatives
of ~E and ~B, or F µν , but we know that F µν can be written in terms of first
derivatives of Aµ, so we take the basic degrees of freedom to be the fields
Aµ(xν).

We have already seen that the action should contain −(q/c)Aµdxµ if we
have a single particle of charge q. That is, the Lagrangian has an interaction
term −qiΦ(~xi) + qi

c
~ui · ~A(~xi). If we have many particles, the interaction term

5Those who have not seen the lagrangian formulation of field dynamics might want to
look at my text in www.physics.rutgers.edu/∼shapiro/507/gettext.shtml and look
at chapter 8 (or get book9 2.pdf from the same location). Of course there are also many
published books as well.
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in L is

∑
i

(
−qiΦ(~xi)− 1

c
qi~ui · ~A(~xi, t)

)
→

∫
d3x

(
−ρ(~x)Φ(~x)− 1

c
~J(~x) · ~A(~x)

)

= −1

c

∫
d3xAα(~x)Jα(~x).

So we have a piece involving Aµ which will contribute a term Jµ to the Euler-
Lagrange equation for A, but we need a pure electromagnetic field term to
generate the left hand side of Maxwell’s equations, which are linear in the
fields, so the term in the Lagrangian should be quadratic in the fields, Lorentz
invariant, and involve a total of two derivatives. Let us try

L = − 1

16π
F µνFµν − 1

c
JµA

µ,

where it is understood that Fµν stands for ∂µAν−∂νAµ and is not an indepen-
dent field. Note the only contribution to ∂L/∂Aµ, which is supposed to be
taken with the derivative terms held fixed, is the −Jµ/c from the interaction
term. We have

∂Fµν

∂

(
∂Aρ

∂xσ

) = δσ
µδρ

ν − δσ
ν δρ

µ,

so
∂L

∂

(
∂Aρ

∂xσ

) = − 1

4π
Fρσ,

and the full Euler-Lagrange equation is

− 1

4π
∂σF σµ +

1

c
Jµ = 0,

or

∂σF σµ =
4π

c
Jµ.


