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Physics 504, Lecture 10
Feb. 25, 2010

1 Collections of Scatterers

As we have seen, the response of a single small scatterer is pretty much
determined, except for strength, simply by its being small, size � λ. But
the response of a collection of small scatterers at fixed but diverse locations
~xj is more interesting. Suppose these occupy a region of size roughly d, with

d � λ, but d small compared to the distance
from which we are observing, d � |~r|. The

scatterer j at position ~xj has an ~Einc with an
extra factor of eikn̂i·~xj , and in the scattered
wave, ~r needs to be replaced by ~r−~xj . Assum-
ing we are observing from far away, |~r| � d,
the variations of the r in the denominator or
the r̂’s are not important, but the effect in the
oscillating exponential is, and we should ap-
proximate eik|~r−~xj | ≈ eikre−ikr̂·~xj , as r � |xj |.
Thus the j’th scatterer will contribute an am-
plitude with an additional phase factor ei~q·~xj ,
with ~q = k(n̂i − r̂), and
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If all the scatterers have the same reaction to fields, the reaction terms factor
out of the sum, and the collection of scatterers behaves like a single scatterer
multiplied by a structure factor

F(~q) =

∣∣∣∣∣∣
∑
j

ei~q·~xj

∣∣∣∣∣∣
2

=
∑
j

∑
j′

ei~q·(~xj−~xj′).

Although all the scatterers are being coherently excited, the phases of the
scattered wave will depend on the positions of the many scatterers, and if
they are randomly situated, as in a gas, with many atoms contributing various
random phase factors ~q·~xj , we may consider the scattering as incoherent, with
only the terms with j = j′ contributing, and F(~q) = N , except when ~q = 0,
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for forward scattering. Note that a coherent effect would be proportional to
N2, so this incoherent scattering is small. If the scatterers are not randomly
situated, but, for example, in a crystal, whether we get coherent scattering
or not depends on whether the ~q ·∆xj is an integer multiple of 2π for large
sets of atoms, as in Bragg scattering. In that case F will have a factor of N2,
much larger than the N which comes from incoherent scattering of individual
scatterers. But this large value is only for specific values of ~q, giving angles
of scattering that satisfy the Bragg condition. For other ~q’s in a large perfect
crystal, there is no scattering at all, just as for a diffraction grating, there
is no appreciable amplitude for angles which violate d sin θ = nλ by more
than ∆θ ≈ 1/N . Crystal lattice spacings are much smaller than optical
wavelengths, so we will only get Bragg scattering for X-rays, not optical
frequencies. There is coherent scattering in the forward direction, for all
frequencies, but this is not exactly scattering but rather is experienced as
an index of refraction. So a uniform medium medium with a � λ, there is
effectively no scattering.

Real media, however, are not perfect crystals and are not perfectly uni-
form. In particular, gases have variation both because of the randomness in
the location of molecules and because interactions between the molecules can
form fluctuations.

Let us consider a medium without free charges or currents, but with
permittivity ε and permeability µ which fluctuate by small amounts from the
average values ε̄ and µ̄ in the medium. Maxwell’s equations apply without
sources but with ε and µ that vary from point to point. As ~∇ · ~D = 0,

∇2 ~D = = ∇2 ~D − ~∇
(
~∇ · ~D

)
= −~∇×

(
~∇× ~D

)
= −~∇×

(
~∇× ( ~D − ε̄E

)
− ε̄~∇×

(
~∇× ~E

)
.

As ~∇× ~E = ∂B/∂t, the last term is

−ε̄ ~∇×
(
~∇× ~E

)
= ε̄ ~∇× ∂ ~B

∂t
= ε̄

∂

∂t
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)
+ ε̄µ̄

∂
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and the last term of this is
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∂

∂t
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∂
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So all together,

∇2 ~D − ε̄µ̄
∂2 ~D

∂t2
= −~∇×

(
~∇× ( ~D − ε̄E

)
+ ε̄

∂

∂t
~∇×

(
~B − µ̄ ~H

)
. (1)
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This equation is exact but it is most useful if we make approximations to
the right hand side. If we assume the fluctuations δε := ε− ε̄ and δµ := µ− µ̄
are small, and we are interested only in first order effects, we can consider one
frequency at a time, assume all fields are ∝ e−iωt and note that ~D satisfies
an inhomogeneous Helmholtz equation with k2 := µ̄ε̄ω2, and with the right
hand side of (1) as the source. If the unperturbed field is an incident plane
wave

~Dinc(~x) = ~εiDie
ikn̂i·~x

~Binc(~x) =

√
µ̄

ε̄
n̂i × ~Dinc(~x),

the fields in the source term, to first order in the variations, will be

~D − ε̄E =
δε(~x)

ε̄
~Dinc(~x)

~B − µ̄H =
δµ(~x)

µ̄
~Binc(~x)

The correction will then be the scattered wave given by the Green’s function

~D − ~Dinc =
1

4π

∫
d3x′ e

ik|~x−~x ′|

|~x−~x ′|
{

1

ε̄
~∇ ′ × ~∇ ′ ×

(
δε(~x ′) ~Dinc(~x

′)
)

+
iε̄ω

µ̄
~∇ ′ ×

(
δµ(~x ′) ~Binc(~x

′)
)}

(2)

We can do various integration by parts. Note1 that for any vector field ~A∫
V

~∇× ~A =
∫
S ~n× ~A → 0 if ~A vanishes sufficiently at infinity, and therefore∫

V d3x′f(~x ′)~∇ ′ × ~A(~x ′) ∼ − ∫V d3x′
(
~∇ ′f(~x ′)

)
× ~A(~x ′). For the ~Binc term,

f(~x ′) is the Green function,

~∇ ′ e
ik|~x ′−~x|

|~x ′ − ~x| = −~R
eikR

R3
[ikR− 1] , with ~R = ~x−~x ′.

1For any constant vector ~C, by (10) from the front cover,

~C ·
∫

V

~∇× ~A =
∫

V

~∇ ·
(

~A× ~C
)

=
∫

S

~n ·
(

~A× ~C
)

= ~C ·
∫

S

~n× ~A.
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and if we only need the leading order in 1/r, this is ikeik|~x ′−~x|r̂/r. Thus the
~Binc term’s contribution to ~D − ~Dinc in (2) is

−ωk

4π

∫
d3x′ e

ik|~x ′−~x|

r

δµ(~r ′)
µ̄

r̂ × ~Binc(~x
′).

For the ~Dinc term, we also need∫
V

d3x′f(~x ′)~∇ ′ × ~∇ ′ × ~A(~x ′) =
∫

V
d3x′f(~x ′)

(
~∇ ′ [~∇ ′ · ~A(~x ′)

]
−∇′ 2 ~A

)

∼ −
∫

V
d3x′ (~∇ ′f(~x ′)

)
~∇ ′ · ~A(~x ′)−

∫
V

d3x′ ~A(~x ′)∇′ 2f(~x ′)

∼ +
∫

V
d3x′ ~A(~x ′) · ~∇ ′ (~∇ ′f(~x ′)

)
−
∫

V
d3x′ ~A(~x ′)∇′ 2f(~x ′),

where the ∼ means throwing away surface terms. Note that the two terms
in the last line do not cancel, as the left ∇ is contracted into ~A in the first
term but into the other ∇ in the second. Again f(~x ′) = eik|~x ′−~x|/|~x ′ −
~x| is the Green’s function for ∇2 + k2, so for the second term, outside
the region of scattering where we can ignore the δ(~x − ~x ′) term, we have

k2
∫
V d3x′ ~A(~x ′)eik|~x ′−~x|/|~x ′ − ~x|. For large r, we have

eik|~x ′−~x| = eikre−ikr̂·~x ′
,

1

|~x ′ − ~x| ≈ 1/r,

~∇ ′f = −ik

r
r̂eikre−ikr̂·~x ′

, and

(
~A · ~∇ ′) (~∇ ′f

)
= −k2

r
r̂ · ~Ar̂eikre−ikr̂·~x ′

.

The ~Dinc contribution in (2), to leading order, is therefore

1

4π

∫
d3x′ δε(~x

′)
ε̄

k2

r

[
−
(
r̂ · ~Dinc

)
r̂ + ~Dinc

]
eikre−ikr̂·~x ′

,

and the term in brackets is (r̂ ×Dinc)× r̂. So altogether

~D = ~Dinc +
eikr

r
~Asc,

where

~Asc =
k2

4π

∫
d3x′e−ikr̂·~x ′

{
δε(~x ′)

ε̄

(
r̂ × ~Dinc(~x

′)
)
× r̂− ε̄ω

k

δµ(~x ′)
µ̄

r̂× ~Binc(~x
′)
}
.
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The differential cross section for light with outgoing polarization ~ε is

dσ

dΩ
=

∣∣∣~ε ∗ · ~Asc
∣∣∣2∣∣∣ ~Dinc
∣∣∣2

=

[
k2

4π

∫
d3x′ei~q·~x ′

{
~ε ∗ · ~εi

δε(~x ′)
ε̄

− δµ(~x ′)
µ̄

(~ε ∗ × r̂) · (n̂i ×~εi)
}]2

with ~q = k(n̂i − r̂).

1.1 Blue Sky

Our first application is to consider molecules in a dilute gas as a fluctu-
ation in ε from the vacuum at a point. The induced dipole moment is
~pj = ε0γmol ~E(~xj) from Jackson 4.67, so we have

δε = ε0

∑
j

γmolδ(~x− ~xj)

and we assume no magnetic moments, so δµ = 0. Then

dσ

dΩ
=

k4

16π2
|γmol|2 |~ε ∗ · ~εi|2F(~q)

where for a dilute gas we have an incoherent sum and F(~q) is the number of
scattering molecules, except for ~q = 0, the forward direction.

For the gas as a whole the dielectric constant εr = ε/ε0 = 1 + Nγmol,
where N is the number density of molecules. The total scattering cross
section per molecule is then

σ =
k4

16π2N2
|εr − 1|2∑

~ε

∫
dΩ |~ε ∗ ×~εi|2

The polarization factor is
∑

~ε (~εi
∗ · ~ε ) (~ε ∗ · ~εi) = 1− |r̂ · ~εi|2, because the two

polarizations plus r̂ form an orthonormal basis.
Consider light incident in the z direction with ~εi = x̂, so r̂ ·~εi = sin θ cos φ,

and the integral

∫
dΩ |~ε ∗ ×~εi|2 =

∫ π

0
sin θdθ

∫ 2π

0
dφ(1− sin2 θ cos2 φ) = 8π/3,
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and

σ =
k4

6πN2
|εr − 1|2 =

k4

6πN2

∣∣∣n2 − 1
∣∣∣2 ≈ 2k4

3πN2
|n− 1|2

where n =
√

εr is assumed to deviate only slightly from 1.
The intensity of the beam I(z) = I(0)e−αz falls exponentially with dis-

tance with the attenuation coefficient α due to the scattering, with a frac-
tional loss of Nσdz in distance dz, so

α = Nσ ≈ 2k4

3πN
|n− 1|2 .

This is Rayleigh scattering. Note that it is a method of determining the
number of molecules, so an approach which was used historically to determine
Avagadro’s number.

1.2 Critical Opalescence

In the previous discussion we assumed no corrolation in the positions of the
scatterers. This is not a good approximation in denser fluids. A better
approximation is to consider ε̄ to be the mean permittivity of the fluid but
take into account density fluctuations. From the Clausius-Mossotti relation
(J4.70) we have

εr =
3 + 2Nγmol
3−Nγmol

=⇒ dεr

dN
=

9γmol
(3−Nγmol)

2
=

(εr − 1)(εr + 2)

3N
,

so the variation of a region of fluid is

δε

ε0
=

(εr − 1)(εr + 2)

3N
δN.

In a fluid in equilibrium with a reservoir at constant pressure and temper-
ature, the probability that a given piece of fluid occupies a volume V is
exp−G(V )/kBT , where G is the Gibbs free energy and kB is Boltzmann’s
constant. In terms of the isothermal compressibility

βT = − 1

V

(
∂V

∂p

)
T

=

(
V

∂2G

∂V 2

)−1

,

the mean square deviation of 〈(∆V )2〉 = kBT 〈V 〉βT , and

〈(∆N)2〉 = kBT 〈N2/V 〉βT .
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So the total (for all the particles in the volume) differential cross section
is

NV

〈
dσ

dΩ

〉
=

k4

16π2
|~ε ∗ · ~εi|2

∫
d3xei~q·~x δε(~x)

ε̄

∫
d3x′ei~q·~x ′ δε(~x ′)

ε̄

∗

=
k4

16π2
|~ε ∗ · ~εi|2

∣∣∣∣∣εr − 1)(εr + 2)

3Nεr

∣∣∣∣∣
2

×
∫

d3x
∫

d3x′ei~q·(~x−~x ′)〈δN(~x)δN(~x ′)〉.

If we assume the correlation length for density fluctuations is much less than
the wavelength, we may take ei~q·(~x−~x ′) ≈ 1 and the integrals give V 〈(δN)2〉 =
N2kBTβT . As for the blue sky, the attenuation coefficient is just α = Nσ
and the angular integral is

∫
dΩ

∑
~ε |~ε ∗ · ~εi|2 = 8π/3, so

α =
k4

6πN

∣∣∣∣∣(εr − 1)(εr + 2)

3εr

∣∣∣∣∣
2

NkBTβT =
ω4

6πNc4

∣∣∣∣∣(εr − 1)(εr + 2)

3

∣∣∣∣∣
2

NkBTβT .

The most important feature of this is that at the critical point the compress-
ibility βT blows up, so the fluid becomes opalescent.

I am going to skip the sections on diffraction. This has been or is covered
in our optics courses.


