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Physics 504, Lecture 9
Feb. 22, 2010

1 Multipole Expansion, Vector Spherical Har-

monics

Last time we derived the expansion of the Green’s function for the scalar
helmholtz equation, (∇2 + k2)Ψ = −δ(~x − ~x ′), but we observed that it
was awkward to use it for each of the Cartesian components of the vector
potential ~A. Indeed, we found for ` = 0 that ~A is dominated by the electric
dipole moment, which looks much like an ` = 1 effect. When we discussed
the resonant cavity formed by the Earth and its ionosphere, we considered
Ψ = ~r · ~E or Ψ = ~r · ~H , which is more compatible with using spherical
coordinates. Because away from sources ~E and ~H are both divergenceless,
each of these Ψ’s obeys the free Helmholtz equation away from the sources,
and can be expanded as we did in lecture 5: Either J9.112

J9.117 f → g
~r · ~H

(M)
`m =

`(` + 1)

k
g`(kr)Y`m(θ, φ), ~r · ~E(M) = 0 (1)

or ~r · ~E
(E)
`m = −Z0

`(` + 1)

k
g`(kr)Y`m(θ, φ), ~r · ~H(E) = 0. (2)

for magnetic multipole modes (M) (Eq. 1) or electric multipole modes (E)
(Eq. 2). In either case g` satisfies the spherical Bessel equation(
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with solutions outside the source region proportional to h
(1)
` (kr) for outgoing

waves. As we found in that lecture, the transverse components are given by J9.116, 118
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We define the vector spherical harmonic functions, for ` ≥ 1, as J9.119

~X`m(θ, φ) :=
1√

`(` + 1)
~LY`m(θ, φ),
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with orthogonality properties J9.120
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dΩY ∗

`′m′Y`m = δ``′δmm′ . We also have J9.121
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Note in the last equality, it is not because ~L× ~L vanishes, but because it is
i~L, which is perpendicular to ~r.

We could reexpress our results for the radiation of arbitrary sources, in
terms of the appropriate expansion coefficients a` multiplying h

(1)
` for ~r · ~H

or ~r · ~E. But this is rather messy, and we will skip the rest of the chapter.

2 Scattering

Accelerating charges radiate. We have discussed what a specified oscillating
current density will do, but we need to also discuss what current density will
be created by an incident electromagnetic field. That is, scattering.
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If we have some material which will respond to an incident electromag-
netic field, it will also radiate field, generally in all directions. Of most
interest is an incident plane wave, and the amplitude for an emitted wave in
a particular direction. We will consider small scatterers, of size � λ, and an
incident plane wave1 J10.1

~n → r̂?
~Einc = ~εiEie

ik~ni·~x, ~Hinc = ~ni × ~Einc/Z0.

where a time dependence e−iωt is understood and k = ω/c. If the scatterer is
then induced to have electric and magnetic dipole moments ~p and ~m induced
by this wave, we will get dipole radiation (for r � λ) as derived earlier sign ~m?

~Esc =
k2eikr

4πε0r
[(r̂ × ~p)× r̂ + r̂ × ~m/c] .

The crosssectional area of the incident wave that has the energy radiated
into a solid angle dΩ is called the differential cross section. As the flux is
given by 1

2
r̂ · ( ~E× ~H∗), and we may wish to examine particular polarizations,

projected by ~ε ∗ · ~E, we have the polarized differential cross section is J10.4

dσ

dΩ
(r̂,~ε; n̂i,~εi) = r2

∣∣∣~ε ∗ · ~Esc
∣∣∣2∣∣∣~ε∗i · ~Einc
∣∣∣2

=
k4

(4πε0Ei)2
|~ε ∗ · ~p + (r̂ ×~ε ∗) · ~m/c|2 .

Because we are assuming the scatterers are small compared to a wave-
length, we expect the electric and dipole moment to be quasi-static responses
to the applied fields, and thus not dependent on ω, so the overall scattering
strength is proportional to k4 ∝ ω4, which is known as Rayleigh’s law.

The responses ~p and ~m can be calculated in simple models. In Jackson
§10.1B and §10.1C he does a dielectric sphere and a perfectly conducting
sphere. ⊥ 2/23/09

1I am using ~εi instead of ~ε0 to remove some of the confusion from using the same symbol
as for the permittivity of free space ε0. I will also use i (for incident) more generally instead
of 0.


