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Physics 504, Lecture 8
Feb. 18, 2010

1 Radiation by Sources

We turn our attention to radiation into empty space (no waveguides) by spec-
ified sources. Again our equations are linear and time independent, so we
assume all fields and sources have a time dependence e=**. This fourier com-
ponent of the electromagnetic fields will be determined by the same fourier
component of the charge density p(Z,t) = p(¥)e ™' and current density
J(Z,t) = J(&)e ™. The electromagnetic fields can be specied by the scalar
and vector potentials, but we recall that the scalar and vector potential have
a gauge invariance In Lorenz gauge, where we require V.-A+0d /2ot =0,
we have
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VA_Eﬁ = ~Hol.

Inserting the assumed time dependence, we have that both ®(Z) and each
component of A(Z) satisfy the inhomogeneous Helmholtz equation

(V2 + ) W(&) = —s(2), (1)

with k& = w/c. The Green’s function equation for this Helmholtz equation
was derived in §6.4. I understand we may need to review this.

This equation is (inhomogeneously) linear in ¥ and is an elliptic partial
differential equation. A solution is a superposition of solutions of the ho-
mogeneous equation with specific solutions giving the inhomogeneous terms,
which can be built up piece by piece. We may think of the right hand side as
a superposition of delta functions, s(Z) = [d#'s(Z')0*(Z' — T), so if we have
a solution of

(V2 +#)G(&, ) = —0°(7 — &) (2)
the solution of (1) is
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From electrostatics we know that a point charge at the origin, with potential

V(Z) = has an electric field E = —VV = L, and V- E =
47r60\x] 47?60]3:\3

—V?V = ¢5*(2),
so the function ¢(Z) = 1/[z| has Vé = —&/|z|*, V?¢ = —4m*(Z).

On the other hand, W := el satisfies VIV = j:zk—W and

2]
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vw = |xik (L pv L wo el | w
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T 2ik
- [ﬂk <i - x—3) - /3] W= £ W — W
[ |l 2]
Thus
(V24 E)Wo = (VW) +2(VIW)- (Vo) + W (V2e) + K W¢
21k v
= +WeFouk W . ig — 4xW ()
] [ [l
= —4m* (%)
as W (Z)03(&) = W(0)0%(Z) = 63(Z). But the operator (V2 + k?) is translation-
invariant, so we may translate the solution W¢/4x for 2’ = 0 to arbitrary
z',
ptikli—7|
Gz, 3" = (3)

4|2 — 2|

We have ignored the issue of boundary conditions in this discussion. In
general, satisfying the boundary conditions determines the added solutions
of the homogeneous equation. For our purposes we will ask for outgoing
waves, so we choose the upper sign, et*1#=%'l_ Thus the solution of (1) for ¥
is U(7) = [ &G, 3)s(F).

We want to reexpress the Green’s function in spherical coordinates. If we
solve the Green’s function equation in spherical coordinates,

(V24+#?)G(3,3) = —6(7F—7)

1 /
= _TQSinﬁa(r_T) (0 —0)5(p—¢)
62 2 (9 1 — =/ r r /
=<w+;a—ﬁm’fg) C@F) = @Zo Zﬁm 0O in(0 )
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where r = |Z] and we have used the completeness relation (J3.56). If we let
G(Z,2") = X Rem (1, 2") Yo (0, @) we have
9* 20 L(L+1)
st E* ) R (7, 2") Yo (0,
5 (gt g ) Ronlr o0,

:——(5r r Z Z Yy (0,0 ) Yo (6, 9),

=0 m=—/¢

so we see that R(r,Z") = >, ge(r, 7)Yy, (0, ¢') where

#? 20 LL+1 ) .
(—+———M+k2) (') = sl — ).

or?2  ror 72

For r # r’ this is just the spherical Bessel equation, so the solutlons are
combinations of j,(kr) and ny(kr), or better of j,(kr) and h = Jo(kr) +
ing(kr) — (—i)te*" /kr. For r < r’ we need the solution to be regular at
r = 0, so there are no n or h contributions, only j,

ge(r, ") = ag(r’)je(kr) for r <1/,

while for r>r we Want only outgoing waves, with e**"_ so the solution is
pure 1" with no bt (or )

ge(r,r') = bg(r')hgl)(k‘r) for r > r'.

But from (3) we see that the Green’s function is symmetric under ¥ < 2/,
so ag(r) = aghél)(kr) and by(r) = agje(kr), and we may write more generally

9e(r,1") = agjelkr )Y (krs),

where r_ is the smaller of r» and " and r- is the greater.
To determine the coefficients, observe that the derivative must be discon-
tinuous, with

gir =o'+ —gylr=r"—c) = akje(kr)h"" (kr) — agkhi (kr)jj(kr)
rte —1 1
=/, T—Qé(r —r)dr = ~ 2
The first line is ka, times the Wronskian of hy) and j,, which should be
—r~2. This agrees with the general statement that the Wronskian satisfies
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dW/dr = —P(r)W, where P(r) is the coefficient of the first order term, here
2/r. Thus we can determine a, at any point, and as

Je(x) = \/>Jz+1/2 21“(6\17?3/2) (f’:)Z,

n(@) =\ Newapa(®) = T+ 1/2) (2 )m%,

hg) = z + Z?”Lg — an,

SO jg(?‘)h;(l)(kr) - hy)(r)jé(kr) — i/(kr)?, and a, = ik. So all together

otklZ—2'| ' . Lo
= ik > jo(kr g (krs) Vi, (0, ¢) Yo (0, ).

Am|Z — 2| o

So we are now ready to examine the solutions to the Helmholtz equation,

. . ik|Z—2|
A@) = % / d%’J(f’)rfi

_f/|

-

= gk 3 [ 5 ol B ()Y (61,0 Yir (6, 6) 7).
Im

If the sources are restricted to some region |Z’| < d, and we are asking about
positions further from the origin, » > d, then r- =’ and r~ = r, and

A(@) = ik S0 (k) Y (0 / B (k'Y Y7 (0, 8) T ().

Im

We see that A has an expansion in specified modes (¢,m) with the sources
only determining the coefficients of these modes. If the source region is small
compared to the wavelength, d < A = 27 /k = 27c/w, we have k1’ < 1
whereever J(Z') # 0, so we may use the expansion j(z) ~ /(20 + 1)!,
appropriate for x < 1. We see that the lowest ¢ value which contributes will
dominate.

1.1 Zones

This expression can be simplified if we consider restrictions on the relative
sizes of d, A\, and 7.
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If d and r are both much smaller than A\, we are in the near zone, we

may set k& = 0 while setting kjg(k?“<)h§1)(k’7’ >) to 575 :%1 The fields are
>

essentially instantaneously generated by the currents and charges. If, in
addition we assume d < r, the lowest ¢ value will dominate.

If 7 > A and 7 > d, the fields oscillate rapidly with h{" (kr) — (—i)“1e /r,
falling off only as 1/r, typical of radiation fields, and this is called the far
or radiation zone. If we also have d < A, kr_ is small whereever J doesn’t
vanish, and the lowest ¢ mode will dominate.

We have not bothered to find ®(Z) because the Lorenz gauge —iw®/c?* =
—V - A gives it in terms of A, except for w = 0, for which () is given by the
static Coulomb expression integrated over all the charges, the electric field is
given by Coulombs law, and there is no magnetic field arising from ®.

1.2 Electric Dipole

So, for example, if the ¢ = 0 term does not vanish, we may write
A@) ~ ipokhl" (kr) Yoo/d Y5 J(@) = /d3 'J(@

because A (x) = —ie'”/z. As we are assuming all sources have an e~™* time
dependence, and the continuity equation tells us V-J= —0p/Ot = iwp, we
may write! [ d32/J(Z') = —iw [ d3’ #'p(Z'). The integral is just the electric
dipole moment, so .
o tpow _ e’
A@) ~ - 47 r’
which is accurate for all » > d to lowest order in d/\, provided the dipole
moment isn’t zero.

Quite generally,

I
= —V x A,
Ho

while outside the region with sources

" = —jweE =V x H=E =22V x H,

ot k

For any two vector functions A and B, fv =22, Jy(05(AiBj) — B;jo; A;) =

Jov Ai(B-dS) — [, B-VA:. So [, AV fdv B dS fv(é 6;T et A=7'

B=1J, and with J vamshlng at mﬁnlty, we have iw [d32'T ' p(2') = fd%’f'ﬁ SJ(@) =
— [ (T-V)3') = — [ &' J(T").
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with Zy = y/po/€0- The curl of pf(r) is # x gdf /Or, so for our electric dipole

source, we have
. Ck’Q . ~ 1 ezkr
H=—7¢rxp|l—— ,
’

4 tkr
and?
B@) = i%z—’fﬁ x (T % ) (1 - %) 6,;
= 2'471:60 [—219 (1 - %) er’; +Z X (T xp %d% (1 - %) erl;]
— 2'47’:60 e;% [2]7(1 —ikr) + T x (% x ) <f’_2 - 3;_’“ _ kQﬂ

Note the first term in E is perpendicular to &, but the second is not.
However this longitudinal term falls off as r=2, so may be neglected in the
radiation zone r > X\, where we can write

. Ck2 . eikr

=—7rXp
47 pr

_k2€ikr .
rX(rXp)=—Zyr x H
4meqr ( P) 0

in the radiation zone.

E =

In the near zone, that is when d < r < A, we have

= w o,
H = 57 XD
4rr

(37(7 - p) = P)

in the near zone

—_

The electric field in the near zone is just what we would have from a static
dipole of the present value at each moment, and the E field dominates the
H field in this zone.

2V x (EXFIT); = Y ikmg cijkOjekmqTmPaf (r) = 32 0jwipi f(r) — Ojugpif(r) =
=2p;i f(r) 432 (wipj—x;pi)7idf [dr(r), so VX (Z x 5 f(r)) = =2pf (r)+Zx (Zxp)r—df /dr.
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504: Lecture 8

In the intermediate zone, where r is comparable to A and kr is of order
1, all of the terms in Jackson Eq. 9.18 are comparable, and the fields have

no particularly simple approximate expression.
If we ask about the power radiated at large dis-

tances, the average power per unit solid angle is

(P) P L APV PRV

m = ERGT'(EXH)N2(47T)2|T’X(7"><]5)|
Zoc*k* 5 Zo’kr .,
352 P (1 — cos“0) o3 P sin 0,

where 6 is the angle between p'and Z. The total power

radiated is
m P
(P) = 27?/0 do siHG%
Zockt g Zoc2kt
0¢ p2/ df sin® 6 = 0 P2
167 0 127

1.3 The Next Order

To include the next order contributions, essential if the dipole moment van-

ishes, we look at the £ = 1 term in the expansion,
m=1
AD = gkt (kr) S Vinl0,0) [ daja (k)5 (01, 6)T().
m=—1
With A '
W,y _ € z : _ 7z 2
hi’(x) = . <1+x>’ J(z) = 3 <1+Ox),
and
= * A 3 A 7
mgl lem(ea ¢)}/1m(9 :¢ ) = Er : 71/7
we see that
. 3 1 ikr . .
AV = gk (1 + é) [t 7.

The multipole moments involved here are tensors ~ Z’J(Z’). The antisym-

metric part is the integral of the magnetization
1 -
M(F') = 53 x J(@),  with i = /d%’M(:i:”)
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the magnetic dipole moment.

—

P =5 [ [ T@E - (2]
The symmetric piece is related to the electric quadripole moment
Qi = /d3 ’(31‘ ) —$,25ij) p(Z')
- /d3 ’(395 ) —x’Qéij) ;Zﬁ J
= L [ (sai - o)
= —/d3x'Jk 35 iy -+ 307y — 2952%)
=

So#-Q =L [da (37 J(x) & +3¢- &' J(@') — 22" J(F) 7).

For completeness we need to consider a electric monopole term
Mg = /d?’x’xap 22/d3 'z

So our complete ¢ = 1 vector potential is
qu _ _pok e
247 r

Let us evaluate H and E only to leading order in 1/r, so we need only
consider the derivative acting on €**", and needn’t worry about V x 7. We
can also drop the i/kr term.

(1+lj)(6r><m+zwr Q + iwMpgr).
T

Then
r7(1) 1= A(1) k2 eikr ~ ~ - PN . ~
HY = —V x AY = — —7 x (67 x m +iwr - Q + iwMgr).

o 241 7

The electric monopole contribution vanishes due to 7 x 7 = 0. The magnetic
dipole contributes

- k2 ikr . . .
HY = X (7 x m),
™ T
= Y4 k*Z
B :Z;v HW:—4£ir (7 x (7 x 171))
k2Z0 ezkr A ~
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These are of the same form as for the electric dipole, but with E and H
interchanged. The radiation pattern is the same, but the polarization has
E L here, while E lies in the plane including 7 and p for the electric
dipole.

One might be tempted to think the electric quadripole also vanishes,
as it involves 7 x (7-Q), and Q is symmetric. But that is incorrect: in
7 X (7 Q) =X €,kTiQjeTe€x, the summands are symmetric under ¢ < £ and
antisymmetric under ¢ < j, but that does not make things vanish. Jackson
defines the vector Q(7) := 3 Qijnjé;, and then we have 7 x Q(#). Then again
keeping only 1/r terms,

. ick3 eikr . S

H™ = oo

- —iZyckd ekt L
E™® = ﬁ . T’X(T’XQ(T’)).

Power radiated

Probably the most interesting thing one might ask is how much power is
radiated, and in which directions, as we did for the electric dipole.

For an electric quadripole, |Q] is a sym-
metric real traceless tensor, so we could rotate
the coordinate system so that it will be diag-
onal. If we take an axially symmetric case,
with Q.. = —2Q,, > 0.

The average power per unit solid angle is

(P) P R e
d—Q = ERGT(EXH)
o |7 x (7 x Q(F)) |

as shown.



