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Physics 504, Lecture 7
Feb. 15, 2010

1 Sources of Waves in Wave Guides

We now turn our attention to the sources of waves in waveguides. With given
sources (i.e. ignoring back reactions) the equations are still linear (inhomoge-
neous) in the fields and time-independent, so we can assume everything has a
e−iωt time dependence. The normal modes of free waves in a waveguide form
a complete set of states for the source-free solutions to Maxwell’s equations
in the guide, though we need to include all the modes, including those whose
cutoff frequency is above ω. Far from the sources, however, only the real
values of k, for modes with ωλ < ω, will have appreciable amplitude.

We will expand our fields in the normal modes, which will be indexed by
a composite index λ, which includes information about whether the mode is
TE or TM (or of other nature, e.g. TEM), and also the indices which specify
which mode (roughly the angular and radial ‘quantum’ numbers) For a given
mode we have two values of k, either positive (right moving) and negative
(left moving), or ±i|k| for cutoff modes. We will lump the +i|k| modes in
with the positive k ones, and write the (+) part of the λ mode as

~E+
λ (x, y, z) =

[
~Eλ(x, y) + ẑEz λ(x, y)

]
eikλz

~H+
λ (x, y, z) =

[
~Hλ(x, y) + ẑHz λ(x, y)

]
eikλz

where ~E and ~H are purely transverse, and were given in terms of Ez or Hz

for TM or TE modes respectively earlier. There are also modes travelling in
the negative z direction. The equations are symmetric under z ↔ −z, under
which the transverse ~Eλ(x, y) is unchanged but Ez λ(x, y) changes sign. The

magnetic field is a pseudo-vector, so for it the transverse ~Hλ(x, y) changes
sign but Hz λ(x, y) is unchanged. Thus

~E−
λ (x, y, z) =

[
~Eλ(x, y)− ẑEz λ(x, y)

]
e−ikλz

~H−
λ (x, y, z) =

[
− ~Hλ(x, y) + ẑHz λ(x, y)

]
e−ikλz
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The transverse fields ~Eλ form a basis which we can choose to be real and
normalized, ∫

A

~Eλ · ~Eµ = δλµ.

That this can be done, and what this normalization requires for the basis of
normal modes for Ez and Hz is elaborated in the slides. With this normal-
ization, and from ~Hλ = Z−1

λ ẑ × ~Eλ we also have

∫
A

~Hλ · ~Hµ =
1

Z2
λ

δλµ,

and in the time-averaged power expression 〈P 〉 = 1
2

∫
A

(
~E × ~H

)
· ẑ we have

∫
A

(
~Eλ × ~Hµ

)
· ẑ =

1

Zλ
δλµ

The above normalization for the ~Eλ comes from requiring that the z compo-
nents satisfy orthogonality conditions and normalization conditions adjusted
appropriately. For TM waves, ~Eλ = ikλγ

−2
λ
~∇Ez λ, so

δλµ =
∫
A

~Eλ · ~Eµ = −kλkµ
γ2
λγ

2
µ

∫
A

~∇Ez λ · ~∇Ez µ =
kλkµ
γ2
λγ

2
µ

∫
A
Ez λ∇2Ez µ

= −kλkµ
γ2
λ

∫
A
Ez λEz µ,

where in the integration by parts (third =) the surface term vanishes as
E|S = 0, and for the fourth ∇2Ez µ = −γ2

µEz µ, so

∫
A
Ez λEz µ = −γ

2
λ

k2
λ

δλµ,

while for TE waves the same argument for H gives

∫
A
Hz λHz µ = − γ2

λ

Z2
λk

2
λ

δλµ.
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For a rectangular waveguide, 0 ≤ x ≤ a × 0 ≤ y ≤ b, the modes are
labelled by integers m and n, with

TM waves: ψ|S = 0

Ez mn = ψ =
−2iγmn

kλ
√
ab

sin
(
mπx

a

)
sin

(
nπy

b

)
,

Exmn =
2πm

γmna
√
ab

cos
(
mπx

a

)
sin

(
nπy

b

)
,

Eymn =
2πn

γmnb
√
ab

sin
(
mπx

a

)
cos

(
nπy

b

)
,

TE waves: ∂ψ
∂n

∣∣∣
S

= 0

Hzmn = ψ =
−2iγmn

kλZλ
√
ab

cos
(
mπx

a

)
cos

(
nπy

b

)
,

Exmn =
−2πn

γmnb
√
ab

cos
(
mπx

a

)
sin

(
nπy

b

)
,

Eymn =
2πm

γmna
√
ab

sin
(
mπx

a

)
cos

(
nπy

b

)
,

where

γ2
mn = π2

(
m2

a2
+
n2

b2

)
.

The functional form of ψ is immediately apparent from the boundary condi-
tions, and for TM modes ~E = ik~∇ψ/γ2, and for TE modes ~E = −iZkẑ ×
~∇ψ/γ2. The overall constants are determined from the normalization

∫
AE

2
x+

E2
y = 1, except that for TE modes, we need an extra factor of 1/

√
2 for each

n or m which is zero, as
∫

cos2(mπx/a) = a(1 + δm0)/2.

1.1 Expansion of free waves

In our waveguide, an arbitrary field configuration in the absence of sources
can be described by expanding in normal modes with positive and negative
(or +i and −i) wave numbers, as described above. Thus a total field

~E = ~E+ + ~E−, ~H = ~H+ + ~H−,
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with
E± =

∑
λ

A±
λ
~E±
λ , H± =

∑
λ

A±
λ
~H±
λ ,

can describe an arbitrary field configuration in a region that has no sources,
with the A’s constant (independent of z) in such a section of the wave guide.

The coefficients are determined by the transverse components ~E and ~H along
any cross section, for ~E has expansion coefficients A+

λ e
ikλz + A−

λ e
−ikλz while

~H has expansion coefficients A+
λ e

ikλz − A−
λ e

−ikλz. This gives the expansion
coefficients (taking z = 0) as

A±
λ =

1

2

∫
A

~E · ~Eλ ± Z2
λ
~H · ~Hλ.

1.2 Localized Sources

We have described the waves that can propagate in the waveguide, but what
actually produces such waves? We will consider a localized source with cur-
rent density ~J(~x)e−iωt confined to some region z ∈ [z−, z+], at the ends of
which we imagine cross sections denoted by S−, S+. We will assume there
are no sources or obstacles to the right of S+ or to the left of S−, so at S+

there is no amplitude for any mode with negative k or with −i|k|, which
would represent left-moving waves or exponential blow up (as z → +∞).
The reverse is true at S−, so

~E =
∑
λ′
A+
λ′
~E+
λ′ ,

~H =
∑
λ′
A+
λ′
~H+
λ′ at S+

~E =
∑
λ′
A−
λ′
~E−
λ′ ,

~H =
∑
λ′
A−
λ′
~H−
λ′ at S−

In between, we have the full Maxwell equations (with sources),

~∇× ~E = −∂
~B

∂t
= iωµ0

~H, ~∇× ~H = ~J + ε0
∂ ~E

∂t
= ~J − iωε0 ~E,

while the normal modes obey Maxwell equations without sources:

~∇× ~H±
λ = −iωε0 ~E±

λ ,
~∇× ~E±

λ = iωµ0
~H±
λ .

If we apply the identity

~∇ ·
(
~A× ~B

)
=
(
~∇× ~A

)
· ~B − ~A ·

(
~∇× ~B

)
,
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we find

~∇ ·
(
~E × ~H±

λ − ~E±
λ × ~H

)
=
(
~∇× ~E

)
· ~H±

λ − ~E ·
(
~∇× ~H±

λ

)
−
(
~∇× ~E±

λ

)
· ~H + ~E±

λ ·
(
~∇× ~H

)
= iωµ0

~H · ~H±
λ + iωε0 ~E · ~E±

λ − iωµ0
~H±
λ · ~H + ~E±

λ ·
(
~J − iωε0 ~E

)
= ~J · ~E±

λ

If we integrate this over the volume between S− and S+, using Gauss’
theorem and the boundary condition that ~E‖ = 0 at the conductor’s surface,∫

S

(
~E × ~H±

λ − ~E±
λ × ~H

)
· n̂ =

∫
V

~J · ~E±
λ ,

where S consists of S+ with n̂ = ẑ, and S− with n̂ = −ẑ.
Let’s take the upper sign. The contribution from S+ is can be reduced to

an integral over A at z = 0:

∑
λ′
A+
λ′

∫
S+

(
~E+
λ′ × ~H+

λ − ~E+
λ × ~H+

λ′
)
z

=
∑
λ′
A+
λ′

∫
S+

(
~Eλ′ × ~Hλ − ~Eλ × ~Hλ′

)
z
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′

∫
A

(
~Eλ′ ×

(
Z−1
λ ẑ × ~Eλ

)
− ~Eλ ×

(
Z−1
λ′ ẑ × ~Eλ′

))
z
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′

∫
A

(
1

Zλ
~Eλ′ · ~Eλ − 1

Zλ′
~Eλ · ~Eλ′

)
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′δλλ′

(
1

Zλ
− 1

Z ′
λ

)
ei(kλ+kλ′)z = 0.

On the other hand, the contribution from S− is

∑
λ′
A−
λ′

∫
S−
−
(
~E−
λ′ × ~H+

λ − ~E+
λ × ~H−

λ′
)
· ẑ

=
∑
λ′
A−
λ′

∫
S−
−
(
~Eλ′ × ~Hλ + ~Eλ × ~Hλ′

)
· ẑ ei(kλ−kλ′)z

= −∑
λ′
A−
λ′

2

Zλ
δλλ′ = − 2

Zλ
A−
λ

so

A−
λ = −Zλ

2

∫
V

~J · ~E+
λ .
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The same argument for the lower sign, as spelled out in the book, gives the
equation with the superscript signs reversed, so both are

A±
λ = −Zλ

2

∫
V

~J · ~E∓
λ .

In addition to sources due to currents, we may have contributions due
to obstacles or holes in the conducting boundaries. These can be treated as
additional surface terms in Gauss’ law (by excluding obstacles from the region
of integration V ), but this requires knowing the full fields at the surface of
the obstacles or the missing parts of the waveguide conductor. This is treated
in §9.5B, but we won’t discuss it here.

So finally we are at the end of Chapter 8.


