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Physics 504, Lecture 6
Feb. 8, 2010

1 Geometrical Fiber Optics

The wave guides considered so far contained their fields within conducting
walls, but we know from studying total internal reflection in elementary optics
that it is also possible to contain fields by changes in the index of refraction.
An extremely important application is fiber optics.

A fiber optic cable is a silica fiber with an index of refraction which varies
as a function of radius. The simplest form is a core of radius a and index of
refraction ny, surrounded by a shell of outer radius b and having an index of
refraction ng < ny. If the angle of inci-
dence a > o, = sin"!(ng/n,), there will be
total internal reflection and the light will b
be confined. It is more convenient, in dis- 5 G’a\ aI
cussing optical fibers, to use the angle 6
which the light makes with the axis of the
fiber, so the condition for total internal re-
flection is 6 < Omax = cos™(ng/nq).

Of course this discussion was in terms of geometrical optics, suitable if the
wavelength of the light is negligible compared to the geometrical distances,
A < a. Optical fibers come in two categories, multimode and single mode.
For multimode fibers, a ~ 25 ym, b = 75 ym, and the light used is generally
near infrared, A ~ 0.85 um, so geometrical optics is a reasonable approach,
though we shall see that interference effects are still relevant. Single mode
fiber is smaller, a ~ 2 uym, and we need to treat these as waveguides.

Consider the simple multimode fiber, and define
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which is often about 0.01. As it is small, cosfmax ~ 1 — 305, =1 — A, s0
Omax ~ V2A. There is an uncertainty principle between the localization of
a wave and its wave number, which limits the number of modes that can be
transmitted. We may think of this quantum mechanically, where the density
of modes is given by [ (dpdq/27h)” for each mode (in D dimensions). The
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coordinate integral is [d%q = mwa?, and as ]EL] < kytanfOmax = k.V2A,
[d*p = * [ d®k = 27h*k2A. There are 2 polarizations, so the number of
modes that can propagate is roughly N = k2a?A = 1V2 where V := kav2A
is called the fiber parameter. For a multimode fiber N is about 100, but for
a single mode it is 2, one for each polarization.

There is a problem with this simple ar-
rangement, as the distance light travels to
get a distance z down the fiber is z sec 6, so
light with different 6 values will travel dif-
ferent optical distances to get to the same 9 ~
point, and will interfere. This can be ame-
liorated by having more than one transi-
tion, or even a continuum. In fact, for next
week you will find how it can be fixed with
a continuous distribution of n(r).

To analyze such a situation, where ¢(Z) varies smoothly, and assuming
I = po as the fiber is not magnetic, we may write Maxwell’s equations,
having fourier transformed time to discuss a particular frequency, as

V.-eE = Oz(ﬁe)iﬁ—i—eﬁ-ﬁ

VxE = —uoaa—lj:m@wljl
VxH = a;—tE:—iweE
V-H = 0.
So
6x<6xﬁ) = —V2E‘+§<_‘-E):iuowﬁxﬁ:uow%ﬁ
_ —V?E—ﬁ(% (V) £)
U (VxH) = V(- H) = iV x ()
~V?’H = —iw (ﬁe)xﬁ—iweﬁxﬁz—iw (ﬁe)xﬁjtuouﬂeﬁ.
or
VI + puteB+ ¥ (= (Fe) B) = 0

VZH —i—,uow%ﬁ — W (ﬁe) xE = 0
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We can simplify these equations if we assume that e varies slowly compared

to a wavelength, so
Ve K co®
A c’

The other terms in the equations are of order w?/c? times E or H respectively,

(eE} ~ H/c) so the Ve terms may be dropped as small. Then the components
of both E and H satisfy!

(v + () vty =0 )

This equation, which describes the rapidly oscillating function v, can be
replaced by a more gradually varying function by using the Eikonal, writing

w(fj _ ein(F)/C

— 1 . i - 2 ~ ‘
s V=V (LS - l%v%* -i(%) (vs)ﬂ (S

C

This is —(w?n?/c?)e™5/¢ from (1), so
n2(F) — VS - VS = —i£V2S.

c/w ~ A, so as V.S varies on the same scale as n(7), which is slowly com-
pared to 1/A, the right hand side can be dropped, and we have the eikonal
approximation

VS - VS = n?(F). (2)
This equation doesn’t tell us the direction in which S changes but it does
tell us that the rate is just n(r), so in following a particular ray’s path we
can define a unit vector k() such that V.S = n(7)k(7). Near a point ry we
may expand

b = (@) + (7= 7) - VS) fe _ iwS(7v)/e jiwhk - (7 — F)n(F) /e

J

!Jackson uses ¥ instead of 7 in most of these equations, to emphasize that n depends
only on the transverse location, and not on the axial coordinate z. But clearly the wave
function ¢ and the eikonal S do depend on z along a given ray.
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so it is locally a plane wave with |k| = wn(7)/c, suitable for a wave with
speed ¢/n(r) as one might expect. If s is the distance measured along the
path of the ray, di/ds =k, n(r)dr/ds = V.S, so

d dr d = - dS -

T

(In the penultimate expression I' represents the ray’s path.)

In general, a ray will be directed in a direction with a large axial compo-
nent, a radial component, and an aximuthal component. If the latter is zero,
the ray will pass through the axis, and the ray is called meridional. Rays
with a nonzero azimuthal component will never pass directly through the
axis, and are called skew rays. In terms of wave functions, such rays corre-
spond to azimuthal ‘quantum’ numbers m # 0, and have vanishing intensity
at p = 0 (on the axis). Following Jackson we will avoid complication and
discuss only meridional rays, which is also equivalent (for geometric optics,
at least) to discussing a plane slab. So the p direction will be renamed x, and
we consider a ray confined to the xz plane, where z is the overall direction
of motion. We assume n doesn’t depend on z.

The x and z components of Eq (3) are

d . dn(x) d _ dn(7)
I (n(x)sinf) = ppa P (n(x) cos ) = e

Thus n(z) cosf is a constant along the path, and if § < fpax the path will
turn around at xmax, at which cos@ = 1, so the constant value of n(x) cosf
is just 7 := n(axmax), but it is also, of course, n(0) cos §(0).

Note that dz/ds = cos§ = n/n, so the path is determined by rewriting
the  component of Eq. (3) as

d*x dn(z) 1d
2 _ _ 2
SO o= n(x) T =57 ().

= 0.

Whether by inspiration from mechanics, viewing —%nQ(x) as a potential, or
otherwise, if we multiply this equation by &’ := dx/dz we get

1 ,d d$2_1d2 -2 /2 _ 2 =2
éna<—> =——n°(x) = n“2’* =n’(x) — n°,
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where the constant of integration 712 is determined by 2’ = 0 at zmax, n(rmax) =
n. So the axial distance traveled from the point the ray crossed the axis to
reaching radius x is

The path is important because if different rays have different path lengths
to get to the same (large) displacement z down the fiber, they will interfere.
From one crossing of the axis to the next, the ray moves in z a distance

7 =% / mmax  dv
0

\/n2(x)—ﬁ2'

The distance travelled is not important, but the optical distance, [n(x)ds
is, because that determines the change in phase, and the optical distance
corresponding to the axial displacement Z is

Tmax ds dz Tmax n(x n
Lopt = 2/0 n(x)%% dx:2/0 n(x) (z) dx

= 2 / e n2(x—) dz.
0

n?(x) — n?

no . /n2(z) — n?

The phase difference in a single half-period is not likely to be important,
but when the rays travel a large distance z, the total optical path will be
Loptz/Z. Thus it is ideal if Lopt/Z is independent of 7, that is, it is the
same for all rays. In problem 8.14 you will show how to accomplish that.

In addition to geometrical dispersion coming from not having Lopt /7
independent of n, there can also be frequency dispersion due to the variation
of n(Z) with frequency. This will not effect a very narrow bandwidth signal
(one with a very narrow range of w), but the rate at which information can
be carried is proportional to the bandwidth, so we would like to have little
dispersion in frequency as well. We also want minimal absorption. These
two issues for silica encourage using A ~ 1.4um.



