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Physics 504, Lectures 1-2
Jan. 21 - 25, 2010

1 Lecture 1

Prof. Thomas covered Chapters 1-7 in Jackson, pretty completely, as I un-
derstand it. We will cover the remaining chapters, 8-16, but probably we will
leave out a greater fraction of the topics.

The basics of classical electrodynamics are very simple: Maxwell’s Equa-
tions and the Lorentz Force. The applications, however, are many, important,
and often quite involved. After a brief review of Maxwell’s equations, we will
begin with a discussion of electromagnetic fields within a region bounded by
materials which tend to confine them — waveguides, cavities, and optical
fibers. Then we will discuss sources of such fields, such as antennas, and the
radiation that results. This will be followed by scattering and diffraction.

After these rather applied subjects, we will turn to some formal discus-
sions, in particular special relativity and the relativistic forms of expressing
electromagnetism. I should remind you that it was by considering electro-
magnetic effects that Einstein was led to special relativity. Then we will
return to applications, now focussing on possibly relativistic particles.

First, let’s review the basic equations:

1.1 Maxwell’s Equations

1.1.1 Fundamental

In terms of total charge density ρall and total current ~Jall, which include
polarization charges and magnetization, Maxwell’s Equations are

~∇ · ~E =
1

ε0
ρall (1)

~∇ · ~B = 0 (2)

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~Jall (3)

~∇× ~E +
∂ ~B

∂t
= 0 (4)
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and the Lorentz force is
~F = q( ~E + ~v × ~B). (5)

~E(~x, t) is the electric field, ~B(~x, t) is, unfortuately, called the magnetic
induction.

Equations 1 and 2 are Gauss’s laws for the electric and magnetic fields
respectively, equation 3 is Ampère’s law with Maxwell’s addition of the dis-
placement current, and equation 4 is Faraday’s law.

1.1.2 With “Ponderable Media”

The charge and current densities ρall and ~Jall include all charges and cur-
rents, both “free” and those induced in materials by the electromagnetic
fields. It is often useful to separate out the field due to these, and define the
electric polarization ~P and the electric displacement ~D, with

~D = ε0 ~E + ~P , (6)

where ~D has as its source only the “free charge” ρ:

~∇ · ~D = ρ. (7)

The polarization is given by the electric dipole moments of the molecules of
the material. The induced charge density is then −~∇ · ~P .

Similarly, the material will respond to electromagnetic fields with mi-
croscopic currents which lead to a magnetization ~M(~x) in terms of which

the induced or effective current density is ~∇ × ~M , and we define the
magnetic field ~H(~x, t) by

~H =
1

µ0

~B − ~M, (8)

with

~∇× ~H − ∂ ~D

∂t
= ~J, (9)

where ~J(~x, t) refers only to the current of free charges.
Although the name “magnetic field”, historically speaking, refers to H

and not B, it is often used, when describing situations without ponderable
media, to refer to B, which is the fundamental field, along with E, that
describes electromagnetism.
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1.2 Interface between conductor and non-conductor

Consider a smooth interface between a good conductor c and a nonconduct-
ing region. There may be a surface charge Σ. If the conductor is perfect,
there will be no electric field inside, and for time-varying fields, there will
be a surface current or eddy current, which prevents H from entering the
conductor.

From the boundary conditions, and the finiteness of ~B,
Faraday gives us

∫ ~E · d` = 0 around a little loop Γ. This
tells us that the components of ~E parallel to the surface
are continuous, and are small or zero even just outside the
conductor, though the normal component is not surpressed.
For the magnetic field, considering the little pillbox S shows
the normal component of B is continuous, and therefore sur-
pressed, but components parallel to the surface can change
quickly or discontinuously due to surface currents in a good
or perfect conductor.
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Consider a good but not perfect conductor, with a large but finite con-
ductivity σ, with ~J = σ ~E. Then ~J is not a delta function of depth ξ, but
rather is spread out in a layer roughly the “skin depth” deep, with H varying
continuously across the boundary but rapidly across the skin depth, going to
zero well within the conductor. Then the current density will be large, and
in Ampère’s law J will dominate over the displacement current, so we can
write

~∇× ~Hc = ~J +
∂ ~D

∂t
≈ σ ~E,

while Faraday gives

~∇× ~Ec = −∂
~B

∂t
= iωµcHc,

assuming a time dependence proportional to e−iωt. The most rapid variation
is with depth: ignoring other components

~∇ = −n̂ ∂
∂ξ
, ~Ec =

1

σ
~J = −1

σ
n̂× ∂ ~Hc

∂ξ
, ~Hc =

i

ωµc
n̂× ∂ ~Ec

∂ξ
, (10)

so n̂ · ~Hc = 0 and

n̂× ~Hc =
i

ωµc

n̂×

n̂× ∂ ~Ec

∂ξ


 = − i

σωµc

n̂×

n̂×


n̂× ∂2 ~Hc

∂ξ2





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=
i

σωµc

∂2

∂ξ2

(
n̂× ~Hc

)
.

Defining the skin depth by

δ =

√
2

µcωσ

we have (∂2/∂ξ2 + 2i/δ2)n̂× ~Hc = 0, or

~Hc = ~H‖e−ξ/δeiξ/δ,

where ~H‖ is the tangential magnetic field at the surface outside the conductor.
To estimate the power loss in the skin, we will need the electric field from

(10),

~Ec = −1

σ
n̂× ∂ ~Hc

∂ξ
=

√
µcω

2σ
(1− i)n̂× ~H‖e−ξ/δeiξ/δ,

which means, by continuity, that just outside the conductor

~E‖ =

√
µcω

2σ
(1− i)n̂× ~H‖.

There are two ways to calculate the power. First, the flow of energy
through the surface is given by the Poynting vector ~S = ~E × ~H . Because we
are using complex fields E and H ∝ e−iωt, of which only the real parts are
physical, we need 〈~S〉 = 1

2
Re ~E × ~H∗. So the power loss per unit area is

dPloss
dA

= −n̂ · 〈~S〉 = −1

2

√
µcω

2σ
n̂ · Re

[
(1− i)(n̂× ~H‖)× ~H∗

‖
]

=
µcωδ

4
| ~H‖|2 =

1

2σδ
| ~H‖|2

The other way is to ask about the ohmic losses, with power lost per unit
volume of 1

2
~J · ~E∗ = | ~J |2/2σ. As | ~J | = σ ~Ec =

√
2

δ
| ~H‖|e−ξ/δ, the power loss

per unit area is

dPloss
dA

= =
1

δ2σ
| ~H‖|2

∫ ∞

0
dξ e−2ξ/δ =

1

2δσ
| ~H‖|2.

We can also express this in terms of the surface current, where we mean the
total current near the surface,

~Keff =
∫ ∞

0
dξ ~J(ξ) =

1

δ
n̂× ~H‖

∫ ∞

0
dξ (1− i)e−ξ(1−i)/δ = n̂× ~H‖.
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Thus
dPloss
dA

=
1

2σδ
| ~Keff|2.

Thus we may view 1/σδ as the surface resistance, or the ratio ~E‖/ ~Keff =
(1− i)/σδ as the surface impediance Z.

1.3 Waveguides

As our situation involves time-independent boundary conditions and linear
equations, we can use a fourier transform in time, with

~E(~x, t) = ~E(x, y, z) e−iωt

~B(~x, t) = ~B(x, y, z) e−iωt

with the understanding that the physical fields are the real part of these ex-
pressions, and of course we could have superpositions of different frequencies,
but these don’t interact.

In the interior ρ = 0, ~J = 0, so

~∇× ~E = −∂
~B

∂t
= iω ~B, ~∇ · ~E = 0, ~∇ · ~B = 0,

~∇× ~B = µ~∇× ~H = µ
∂ ~D

∂t
= µε

∂ ~E

∂t
= −iωµε ~E.

Then

∇2 ~E = −~∇× (~∇× ~E) + ~∇
(
~∇ · ~E

)
= −~∇× (iω ~B) = −ω2µε~E.

and similarly (
∇2 + ω2µε

)
~B = 0. (11)

Let us assume our problem involves a cylinder of arbitrary cross-section,
but uniform in z (though possibly only on an interval in z, possibly capped
at the ends). Then we can also fourier transform in z,

~E(x, y, z, t) = ~E(x, y)eikz−iωt, ~B(x, y, z, t) = ~B(x, y)eikz−iωt,

where k could take either sign, and we might take a superposition if we need
to. Then the Helmholtz equation (11) for ~B and ~E give

[
∇2

t + (µεω2 − k2)
] ( ~E

~B

)
= 0, ∇2

t :=
∂2

∂x2
+

∂2

∂y2
.
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Break down the vectors into transverse and longitudinal parts:

~E = Ez ẑ + ~Et, ~B = Bz ẑ + ~Bt, with ~Et ⊥ ẑ, ~Bt ⊥ ẑ.

Now

(~∇× ~E)z = (~∇t × ~Et)z = iωBz, (12)

(~∇× ~E)⊥ = ẑ × ∂ ~Et

∂z
− ẑ ×∇tEz = iω ~Bt. (13)

For any vector ~V , ẑ × (ẑ × ~V ) = −~V + ẑ(ẑ · V ), so for a transverse vector

ẑ × (ẑ × ~Vt) = −~Vt. Taking ẑ× Eq. (13) gives

∂ ~Et

∂z
− ~∇tEz = −iωẑ × ~Bt. (14)

The same decomposition of ~∇× ~B = −iωµε ~E gives(
~∇t × ~Bt

)
z

= −iωµεEz (15)

∂ ~Bt

∂z
− ~∇tBz = iωµεẑ × ~Et. (16)

Of course the divergencelessness of ~E and ~B give

~∇t · ~Et +
∂Ez

∂z
= 0, ~∇t · ~Bt +

∂Bz

∂z
= 0.

Making use of the fourier transform in z, we have

ik ~Et + iωẑ × ~Bt = ~∇tEz (17)

ik ~Bt − iωµεẑ × ~Et = ~∇tBz (18)

Solving 18 for ~Bt and plugging into 17, and then the reverse for ~Et, gives

Et = i
k~∇tEz − ωẑ × ~∇tBz

ω2µε− k2
(19)

Bt = i
k~∇tBz + ωµεẑ × ~∇tEz

ω2µε− k2
(20)

Thus Ez and Bz determine the rest, unless k2 = k2
0 := µεω2, in which

case both Ez and Bz are zero. Then there are no longitudinal fields, and
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we call this a transverse electromagnetic (TEM) wave. It travels in the z
direction at the speed 1/

√
µε which we would have for a plane wave in an

infinite medium, and with the wave number k = k0 := ω
√
µε that the wave

would have in an infinite medium. These TEM fields satisfy ~∇t · ~Et = 0,
~∇t × ~Et = iωBz = 0, and therefore ~Et = −~∇tΦ for some (not necessarily

singlevalued) function Φ on the cross section, with ∇2Φ = 0. As ~E‖ = 0
at the boundary, each boundary is an equipotential of Φ, and if the cross
section is simply connected, the only solution is Φ = constant, ~Et = 0. Thus
there can be no TEM wave on a simply connected cylinder, but the TEM
is the principal wave on a coaxial cable (which has an inner and an outer
conductor, with different Φ, or for parallel wires, as in an old 300 Ω television
cable. Note that if µ and ε are nondispersive, so is the TEM wave, with no
cutoff on the transmission frequency or wavelength.

For perfectly conducting waveguides we saw that at the boundary ~n× ~E =
0, ~n · ~B = 0. This means Ez = 0 and ~Et ‖ ~n at the boundary. From

~n · (∂ ~Bz/∂z− iµεωẑ× ~Et− ~∇tBz) = 0, the first two terms vanish, the second

because ~Et ‖ n̂ at the boundary, so ∂Bz/∂n|S = 0. Thus Ez satisfies a
Dirichlet zero condition and Bz satisfies a Neumann zero condition boundary
conditions in two dimensions. For simply connected cross section, there are in
general no nonzero solutions, except for certain discrete values of the constant
µεω2 − k2, and the allowed values will, in general, be different for the two
possibilities. So in general if there is a solution for one condition, say Ez = 0
on the boundary, we will have Bz ≡ 0, the magnetic field is purely transverse,
and we call this a transverse magnetic (TM) mode. For the other condition,

~n · ~∇tBz = 0 on the boundary, we have Ez ≡ 0, ~E is purely transverse, and
this is called a transverse electric (TE) mode.

1.4 Waveguide impediance, modes, and cutoff frequen-
cies

Note that for a TM mode with vanishing Bz, (19) and (20) give

TM: (k2
0 − k2) ~Et = ik~∇tEz, (k2

0 − k2) ~Bt = iµεωẑ × ~∇tEz

or ~Ht = εωk−1ẑ × ~Et, while for a TE mode with vanishing Ez

TE: (k2
0 − k2) ~Et = −iωẑ × ~∇tBz, (k2

0 − k2) ~Bt = ik~∇tBz,
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so ~Et = −ωẑ × ~Bt/k. Premultiplying by ẑ×, we have Ht = kẑ × Et/µω. In
both cases we have

~Ht =
1

Z
ẑ × ~Et, Z =




k
εω

= k
k0

√
µ
ε

TM

µω
k

= k0

k

√
µ
ε

TE

Now each component of ~E and ~B is of the form Ψ(x, y)eikz−iωt where each
Ψ satisfies (

∇2
t + γ2

)
Ψ = 0 γ2 = µεω2 − k2

For the TM and TE modes they are determined by a single scalar ψ, and for
t = z = 0 are given by

TM: Ez = ψ, ~Et = ikγ−2~∇tψ ψ|Γ = 0

TE: Hz = ψ, ~Ht = ikγ−2~∇tψ n̂ · ~∇tψ|Γ = 0,

with (∇2
t + γ2)ψ = 0. Note that with these conditions,

0 =
∫

A
ψ∗
(
∇2

t + γ2
)
ψ =

∫
A

~∇t · (ψ∗~∇tψ)−
∫

A
(~∇tψ)∗ · ~∇tψ + γ2

∫
A
|ψ|2,

where A is the cross section. The first integral is a divergence, so is
∮
∂A ψ

∗~n ·
~∇tψ, which vanishes from either boundary condition, the second integral is
strictly positive unless ψ is a constant1, and the coefficient of γ2 is positive,
so γ2 is positive. There will be solutions of the two-dimensional Helmholtz
equation for discrete positive values γ2

λ. For each frequency ω, there can be
waves with wave numbers

k2
λ = µεω2 − γ2

λ,

so only waves with ω > ωλ := γλ/
√
µε can propagate. With k2

λ < 0 we can
have cutoff modes (or evanescent modes) which do note propagate but decay
with z. Note kλ <

√
µε ω, the value the wavelength would have in an infinite

medium, so the wavelength in the waveguide is longer than in R
3. The phase

velocity vp = ω/kλ > 1/
√
µε, greater than in R

3.

1In which case we must have a TE mode, but then Et and Bt are both zero, ~E = 0,
and thus Bz = constant.
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1.5 An Example

We see that finding the dispersion of a cylindrical waveguide involves solving
the two dimensional Helmholtz equation with boundary conditions specified
on Γ, the cross section’s intersection with the surface.(

∇2
t + γ2

)
ψ = 0 with ψ|Γ = 0 (TM) or n̂ · ~∇ψ|Γ = 0 (TE).

There are a number of coordinate systems for which the Laplacian operator
can be separated, and if the boundary shapes are suitable, it is straightfor-
ward to find solutions. Of course the simplest is a rectangular wave guide,
for which we can use cartesian coordinates. This is worked out in Jackson,
section 8.4, and you should definitely work through it (rectangular wave-
guides have appeared on the qualifier!), but it is quite clear and it would
add nothing for me to repeat the solution, so instead, lets consider a circular
cylindrical waveguide of radius r.

Naturally we should use cylindrical coordinates, or for the cross section
simply polar coordinates ρ, φ. The Laplace operator in polar coordinates is

∇2
t =

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
.

If we make an ansatz that the solution ψ(ρ, φ) = R(ρ)Φ(φ), we have(
1

ρ

∂

∂ρ
ρ
∂R

∂ρ
+ γ2R(ρ)

)
Φ(φ) +

1

ρ2
R(ρ)

∂2Φ(φ)

∂φ2
= 0.

Dividing by R(ρ)Φ(φ) and multiplying by ρ2 gives

1

R(ρ)

(
ρ
∂

∂ρ
ρ
∂R

∂ρ
+ γ2ρ2R(ρ)

)

+
1

Φ(φ)

∂2Φ(φ)

∂φ2
= 0.

The first line depends on ρ but not on φ, which the second depends on φ but
not on ρ, so they must be equal and opposite constants,

1

R(ρ)

(
ρ
∂

∂ρ
ρ
∂R

∂ρ
+ γ2ρ2R(ρ)

)
= C

1

Φ(φ)

∂2Φ(φ)

∂φ2
= −C.
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The second equation,
∂2Φ(φ)

∂φ2
+ CΦ(φ) = 0

has the solution Φ(φ) = e±i
√

Cφ. As we need a solution periodic in φ, that is
Φ(φ + 2π) = Φ(φ), we see that

√
C must be an integer, m. Then the first

equation is (
ρ
∂

∂ρ
ρ
∂

∂ρ
+ γ2ρ2 −m2

)
R(ρ) = 0,

which is the Bessel equation, with solutions regular at the origin given by
Jm(γρ).

It is straightforward to satisfy the boundary condition by demanding that
γr is a zero of Jm (for TM waves) or of dJm(x)/dx (for TE waves). These
can be looked up in many books2. We have xTM

mn the n’th zero of Jm and
xTE

mn the n’th zero of J ′m. In terms of that numerical value, xmn, we have
γ = xmn/r, and the tube can only support electromagnetic waves with a
frequency greater than the cutoff frequency ωmn = xmn/r

√
µε. The smallest

of these roots is that J ′1, with xTE
11 = 1.8412, and the next is that of J0, with

xTM
01 = 2.4048. If the waveguide is 5 cm in diameter, and filled with air ∼

vacuum, this gives a cutoff on TE modes of f = ω
2π

= 3.5 GHz and 4.6 GHz
for the lowest TM mode.

2For example, Arfken III p. 581, or Jackson p. 114 and 370, or, for far more, Abramowitz
and Stegun, p. 409 and 411.


