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ansform to Frequency space
ved per solid angle, as a function of time1

= | ~A(t)|2 where ~A(t) :=

√
c

4π

[
R ~E

]
ret

.

over time, the total energy deposited per solid

W

Ω
=

∫ ∞

−∞
|A(t)|2dt =

∫ ∞

−∞
|Ã(ω)|2dω,

is the Fourier transform of A(t),

Ã(ω) :=
1√
2π

∫ ∞

−∞
~A(t) eiωtdt.

eal, Ã(−ω) = (Ã(ω))∗, so
dW

dΩ
= 2

∫ ∞

0
|Ã(ω)|2dω.

he vector potential here!

We can define the energy per unit solid angle per unit
frequency,

d2I

dωdΩ
= 2| ~A(ω)|2.

Our expression for the radiative part of the electric field,

R ~E(t) =
q

c

n̂×
(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)3

∣∣∣∣∣∣∣
te

.

gives

A(ω) =

√
q2

8π2c

∫ ∞

−∞
eiωt


 n̂×

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)3




te

dt

where t = te +R(te)/c,
dt

dte
= 1 +

1

c

dR

dte
= 1− n̂ · ~β(te),
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g the integral over te, we have

q2

π2c

∫ ∞

−∞
eiω(te+R(te)/c)


 n̂×

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2


 dte,

t there are not references to t left we can
bscript e.
n̂ · ~r(t), where observer is R from an origin

egion where ~̇β 6= 0, which we assume is small
R. Then√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c)


 n̂×

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2


 dt.

In calculating d2I/dωdΩ the phase factor eiωR/c will be
irrelevant.
We note that the piece in the integrand multiplying the
exponential can be written as a total time derivative:

d

dt

[
n̂× (n̂× ~β)

1− n̂ · ~β

]
=
n̂× (n̂× ~̇β)

1− n̂ · β +
n̂× (n̂× ~β)(n̂ · ~̇β)

(1− n̂ · β)2

=
[(n̂ · ~̇β)n̂− ~̇β ](1− n̂ · β) + [(n̂ · β)n̂− ~β](n̂ · ~̇β)

(1− n̂ · β)2

=
(n̂ · ~̇β)(n̂− ~β)− ~̇β(1− n̂ · β)

(1− n̂ · β)2

=
n̂×

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2

.
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ve

q2

π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c) d

dt

[
n̂× (n̂× ~β)

1− n̂ · ~β

]
dt.

(1)
seful to integrate by parts, but we will also
e discuss the low frequency limit of
ung, that this is useful as is.
by parts, assuming that boundary terms at
be discarded, and inserting in the intensity,

q2ω2

4π2c

∣∣∣∣
∫ ∞

−∞
eiω(t−n̂·~r(t)/c) n̂×

(
n̂× ~β

)
(t)

∣∣∣∣
2

dt.

We will skip pages 676 683

Wigglers and Undulators

The intense peaking of forward radiation from
ultrarelativistic particles, and the blue-shifting thereof, is
useful for condensed matter experimentalists and
biologists who could make use of very intense short pulses
of X-rays. Old high-energy accelerators needn’t die, they
become light-sources. Monochromatic sources would also
be useful.

Wigglers and Undulators use a periodic sequence of
alternately directed transverse magnets to produce
transverse sinusoidal oscillations, x = a sin 2πz/λ0. The

angle of the beam will vary by ψ0 = ∆θ =
dx

dz
=

2πa

λ0
.

The spread in angle of the forward radiation is θr ≈ 1/γ,
centered on the momentary direction of the beam
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we have a wiggler.
θr, the observer sees the source turning on
the source, that frequency is βc/λ0. Each
a pulse to our eye only for a fraction, roughly
ne period, so ∆te ≈ (λ0/βc)× (θr/ψ0).

λ
0

γ1

λ
0 γ ψ

0

gets compressed for the observer by a factor

/2γ2. Received pulse has ∆t =
λ0

βc

1

2γ3ψ0
,

up to f ≈ 1/∆t ≈ 2γ3ψ0c/λ0. Each pulse is
so the intensity is N times that of a single

In the other limit, ψ0 � θr, the observer is always in the
intense region of the beam, and the beam is radiating
coherently. In the par-
ticle’s rest frame the
disturbing fields have
a Fitzgerald-contracted
wavelength λ0/γ, going
by at βc, so the particle
sees itself oscillating at
ω′ = 2πcγβ/λ0 ≈ 2πcγ/λ0.
But the observer in the lab would say the particle’s clock
is running slow and therefore the source frequency is
ω′/γ, but the Doppler contraction of the pulse increases
the frequency by

1

(1− n̂ · ~β)
≈ 1

1− (1− γ−2/2)(1− θ2/2)
≈ 2γ2

1 + γ2θ2
,

where I used β =
√

1− γ−2 ≈ 1− γ−2/2.
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ω =
2ω′

γ(1− n̂ · ~β)
=

4πcγ2

λ0(1 + γ2θ2)
.

coherent radiation, so the intensity is
to N2 and the frequency has a spread
to 1/N

ontent with this rather qualitative discussion
fine details of pp 686-694.

Thomson Scattering

We saw (14.18) that in the particle’s rest frame the
electric field is given by

~E =
q

c2R
n̂× (n̂× ~̇v),

so the amplitude corresponding to a particular
polarization vector ~ε is

~ε ∗ · ~E =
q

c2R
~ε ∗ ·

(
n̂× (n̂× ~̇v)

)
=

q

c2R
~ε ∗ · ~̇v,

as ~ε ∗ · n̂ = 0. The power radiated with this polarization
per sterradian is

dP

dΩ
=

q2

4πc3

∣∣∣~ε ∗ · ~̇v∣∣∣2 .
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tron has an electric field

~E(~x, t) = ~ε0E0e
i~k·~x−iωt

t, it will have an acceleration

~̇v(t) = ~ε0
e

m
E0e

i~k·~x−iωt

n is sufficiently limited to ignore the change in
keep the particle non-relativistic,
ω2 � λ = 2πc/ω), the time average of

~ε ∗ · ~̇v)(~̇v ∗ · ~ε) is

1

2

e2|E0|2
m2

|~ε ∗ · ε0|2

dP
〉

c 2

(
e2

)2
2

Dividing this by the incident energy flux c|E0|2/8π we get
the cross section

dσ

dΩ
=

(
e2

mc2

)2

|~ε ∗ · ~ε0|2 .

If the scattering angle is θ and the incident beam is
unpolarized and the cross section summed over final
polarizations, the factor of
1

2

∑
i

∑
f

|~εf ∗ · ~εi|2

=
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf[

(cos θ cosφf , sinφf ,− sin θ cosφf ) · (cosφi, sinφi, 0)
]2

=
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf [(cos θ cosφf cosφi + sinφf sinφi]

1 [
2 θ + 1

]2
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polarized cross section is

dσ

dΩ
=

(
e2

mc2

)2
1 + cos2 θ

2
.

d the Thomson formula. The corresponding
ection is

σT =
8π

3

(
e2

mc2

)2

.

y in parentheses is called the classical
dius, roughly the radius at which a
phere of charge e would have electrostatic
r = mc2. (The factor of 1/2, or of 3/5 for a
harged sphere, is discarded.)

cross section could have been measured with an
arbitrarily weak field, so recoil could be neglected, but
quantum-mechanically the minimum energy hitting the
electron is ~ω, which gives a significant recoil if ~ω ≈ mc2.
In fact, if we take quantum mechanics into account we are
considering Compton scattering, for which, we learned as
freshman, energy and momentum conservation insure that
the outgoing photon has a increased wavelength,

λ′ = λ+
h

mc
(1− cos θ), or

k′

k
=

1

1 +
~ω

mc2
(1− cos2 θ)

.

It turns out that the quantum mechanical calculation (for
a scalar particle) is the classical result times (k′/k)2:

dσ

dΩ

∣∣∣∣
QM, scalar

=

(
e2

mc2

)2 (
k′

k

)2

|~ε ∗ · ~ε0|2 .


