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Lecture 17 April 1, 2010

Canonical Momentum Density

We have seen that in field theory the Lagrangian is an
integral of the Lagrangian density

L(φi, ∂φi/∂xν , xξ)

and the equations of motion come from the functional
derivatives of L with respect to the local values of the
fields, but because the Lagrangian density is local, these

are given by
∂L

∂φi(xν)
and

∂L
∂(∂ρφi(xν))

, which are

functions of xµ. The Euler-Lagrange equations involved
not a total momentum but a momentum density. For a
scalar field φj this would be

Pµ
j (xρ) =

∂L
∂∂µφj

∣∣∣∣
xρ

.
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For electromagnetism we have not a scalar but four fields
Aν , so we have four 4-vector fields

P µ
α :=

∂L
∂

(
∂Aα(~x, t)

∂xµ

) .

Last time we saw that the lagrangian density for the
electromagnetic fields is

L = − 1
16π

FµνFµν − 1
c
JµAµ,

so the canonical momentum densities are

P µ
α :=

∂L
∂(∂Aα(~x, t)/∂xµ)

= − 1
4π

Fµ
α,

because, as we saw last time, only the F 2 term depends
on ∂Aα/∂xµ.
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The Stress (Energy-Momentum) Tensor

Discrete mechanics: H =
∑

i Piq̇i − L, q̇i → Pi

Field theory: Hamiltonian density

H(~x) :=
∑

i

Pi(~x)φ̇i(~x)− L(~x) =
∑

i

∂L
∂(∂φi/∂x0)

∂φi

∂x0
− L.

Time has been picked out. More generally, let

Tµ
ν =

∑
i

∂L
∂(∂φi/∂xµ)

∂φi

∂xν
− δµ

νL.

This object goes by the names energy-momentum
tensor or stress-energy tensor or canonical stress
tensor, and we see the hamiltonian density is the 00
component of this tensor.
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T µ
ν for electromagnetism

For electromagnetism, φi is replaced by Aλ,

Tµ
ν =

∂L
∂(∂Aλ/∂xµ)

∂Aλ

∂xν
− δµ

νL.

The first factor in the first term is

∂L
∂(∂Aλ/∂xµ)

= − 1
4π

Fµ
λ,

so our first (tentative) expression for the energy
momentum tensor is

Tµν = − 1
4π

(
Fµλ

∂Aλ

∂xν
− 1

4
ηµνF

αβFαβ

)
.

This expression has good and bad properties!

We have seen T 00 is the Hamiltonian density.
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∫
T 0i = P i

If T 00 is the energy density, is T 0j the density of
momentum?

T 0i =
1
4π

F0λ∂iA
λ =

1
4π

Ej∂iAj =
1
4π

(
~E × ~B +

(
~E · ~∇

)
~A
)

i
.

Poynting tells us the first term is the correct expression.
The second term is unwanted, and also not gauge
invariant.
But we haven’t included charges in the momentum, and if
no charges, ~∇ · ~E = 0,

(
~E · ~∇

)
~Ai = ~∇ · (Ai

~E)−Ai
~∇ · ~E is

a total derivative, and won’t affect the total momentum.

So we do have the good property
∫

d3xT 0µ = Pµ, the

total momentum. But we don’t have the right density.
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Conservation of Momentum
If L has no explicit dependence on xµ, we can show
∂µTµ

ν = 0, where ∂µ is the stream derivative. For

∂µTµ
ν =

∑
i

(
∂µ

∂L
∂(∂µφi)

)
∂νφi+

∑
i

∂L
∂(∂µφi)

∂µ∂νφi−∂νL.

The derivative in the last term is given by the chain rule

−∂νL = −
∑

i

∂L
∂φi

∂νφi −
∑

i

∂L
∂ (∂µφi)

∂ν∂µφi

so

∂µTµ
ν =

∑
i

(
∂µ

∂L
∂(∂µφi)

− ∂L
∂φi

)
∂νφi

and the parenthesis vanishes by the equations of motion.
Thus we have

∂µTµ
ν = 0. (1)

This is a good thing.
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Non-symmetry is a bad thing
Note: this Tµν 6= T νµ. This is a problem. We expect the
angular momentum density to be given by εijkxjT

0k, but
that requires Tµν to be symmetric.
So our Tµν is good at giving the total momentum and
being conserved, but bad in not being symmetric or
gauge-invariant. Need modification keeping good
properties but changing bad ones.
If we have a tensor ψρµν = −ψµρν (antisymmetric in first
two indices) and we add ∂ρψ

ρµν to Tµν ,

∆ (∂µT
µν) = ∂µ∂ρψ

ρµν = 0,

so the new Tµν is also conserved. Furthermore,∫
d3x∆T 0ν =

∫
d3x∂ρψ

ρ0ν =
∫
d3x∂jψ

j0ν =
∫

S
njψ

j0ν → 0

for surface S →∞. So adding ∂ρψ
ρµν keeps all the good

properties.
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Improving T µν

So consider ψρµν = AνFµρ/4π, and adding

1
4π
∂ρ (AνFµρ) =

1
4π

(∂ρA
ν)Fµρ

because ∂ρF
µρ = 0 in the absence of a source Jµ. But this

is just what we need to add to Tµν to make

Θµν = Tµν+
1
4π
Fµρ∂ρA

ν = − 1
4π

(
FµρF ν

ρ −
1
4
ηµνFαβFαβ

)
.

This expression has all the good properties and is also
gauge invariant and symmetric. Furthermore,

Θ0i = − 1
4π
F 0jF i

j =
1
4π
EjεijkBk =

1
4π

( ~E × ~B)i,

the correct momentum density or energy flux, as given by
Poynting.
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Ambiguities in L
− 1

16π
FµνFµν is gauge invariant, but the interaction term

in the action, −1
c

∫
d4xJµ(xρ)Aµ(xρ) is not, so L is not a

unique function of the physical state ( ~E and ~B and Jµ).
Is there an ambiguity in the action under a gauge
transformation Aµ → A′µ = Aµ + ∂µΛ? This adds a piece
to the action ∆A = −(1/c)

∫
d4xJµ∂µΛ. But

∫
d4xJµ∂µΛ =

∫
S
nµ J

µ Λ︸ ︷︷ ︸
−→

S→1
0

−
∫
d4xΛ ∂µJ

µ︸ ︷︷ ︸
0

,

so this will not affect the action.
More generally, adding a total divergence to the
lagrangian density in a field theory, like adding a total
time derivative in a particle theory, does not affect the
equations of motion, and is irrelevant to the physics.
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Θµν with currents
The energy-momentum tensor of the electromagnetic field
is

Θµν
EM = − 1

4π

(
FµρF ν

ρ −
1
4
ηµνFαβFαβ

)
,

and is conserved (∂µΘµν
EM = 0 if there are no sources.

What if there are?

4π∂µΘµν = ∂µ

(
FµρF ν

ρ +
1
4
ηµνFαβFαβ

)

= (∂µF
µρ)F ν

ρ + Fµρ∂µF
ν

ρ +
1
2
Fαβ∂νFαβ

=
4π
c
JρF ν

ρ +
1
2
Fαβ

(
∂αF

ν
β − ∂βF

ν
α + ∂νFαβ

)

=
4π
c
JρF ν

ρ +
1
2
Fαβηνρ (∂αFβρ + ∂βFρα + ∂ρFαβ)︸ ︷︷ ︸

=0 as dF=ddA=0

=
4π
c
JρF ν

ρ 6= 0.

Not conserved!
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P ν
EM

is not conserved

Thus the total 4-momentum of the electromagnetic field

P ν
EM =

1
c

∫
d3xΘ0ν(~x),

is not conserved, but rather

dP ν
EM

dt
=

1
c

d

dt

∫
d3xΘ0ν(~x) =

∫
d3x ∂0Θ0ν(~x)

=
1
c

∫
d3xJρ(~x)F ν

ρ (~x)− 1
c

∫
d3x∂iΘiν

=
1
c

∫
d3xJρ(~x)F ν

ρ (~x),

as the second term is the integral of a divergence.
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Total Momentum is conserved

Consider a charged particle of mass mi, charge qi at point
~xi(t). Its mechanical 4-momentum changes by

dP ν
(i)

dt
=

1
γi

dP ν
(i)

dτ
=

1
γi

qi
c
F ν

ρ(~xi)U
ρ
i .

This particle corresponds to a 4-current

Jρ = (cρ, ~J) = (cqiδ3(~x− ~xi), qiuiδ
3(~x− ~xi)

= qiγ
−1
i Uρ

i δ
3(~x− ~xi).

Plugging this into our expression for the change in the
momentum of the electromagnetic field, we have

dP ν
EM

dt
=
qi
c

∫
d3xF ν

ρ (~x)γ−1
i Uρ

i δ
3(~x−~xi) = − qi

cγi
F ν

ρ(~xi)U
ρ
i ,

and the total momentum, P ν
EM + P ν

(i) is conserved.
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Equations of Motion for Aµ

Euler-Lagrange tell us

∂σF
σµ = ∂σ∂

σAµ − ∂µ∂σA
σ =

4π
c
Jµ.

If we knew ∂σA
σ = 0 (the Lorenz condition), we could

discard second term, and have

∂σ∂
σAµ =

4π
c
Jµ,

which has solutions given by
1) a particular solution, given in terms of the Green’s
function on J , and
2) an arbitrary solution of the homogeneous wave
equation ∂σ∂

σAµ = 0. The homogeneous solution is∑
~k

(
Aµ

~k +
ei

~k·~x−iω~k
t +Aµ

~k−e
i~k·~x+iω~k

t
)
,

where ω = c|~k|, where ω = c|~k|.
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But we assumed the Lorenz condition, which constrains
the coefficients ωA0

~k± ∓ ~k · ~A~k± = 0. These are the
solutions for an electromagnetic wave in empty space.

Without imposing the Lorenz condition,

∂σ∂
σAµ − ∂µ∂σA

σ = 0,

which is inadequate to determine the evolution of Aµ(~x, t)
in time. Fourier transform:
kσk

σÃµ(kν)− kµkσÃ
σ(kν) = 0, which is not four

independent equations, because dotting with kρ gives

kσk
σkµÃ

µ(kν)− kµk
µkσÃ

σ(kν) = (k2 − k2)kρÃ
ρ(kν) = 0,

telling us nothing about Ãρ(kν). Euler-Lagrange only
determine the components transverse to k.
This is gauge invariance again. No physics constrains the
gauge transformation Λ(~x, t) in the future, so Aµ is
underdetermined.
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Solving the inhomogeneous equation
But we are free to impose the Lorenz condition. Let’s do
so.

Now we turn to the inhomogeneous equation

Aµ = ∂β∂
βAµ =

4π
c
Jµ,

with the solution

Aµ(x) =
4π
c

∫
d4x′D(x, x′)Jµ(x′),

where D(x, x′) is a Green’s function for D’Alembert’s
equation

xD(x, x′) = δ4(x− x′).
We are interested in solving this in all of spacetime. No
boundaries, translation invariance, so
D(x, x′) = D(x− x′) = D(z). Solve by Fourier transform:

write D(z) =
1

(2π)4

∫
d4kµD̃(kµ)e−ikµzµ

.
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Fourier transformed equation
As δ4(zµ) = 1

(2π)4

∫
d4ke−ikµzµ

, we have k2D̃(kµ) = −1, so
the solution for the Green’s function is

D̃(kµ) = − 1
k2
, and D(zµ) = − 1

(2π)4

∫
d4k

e−ikµzµ

k2
.

As δ4(zµ) = 1
(2π)4

∫
d4ke−ikµzµ

, the solution for the
Green’s function is

D̃(kµ) = − 1
k2
, and D(zµ) = − 1

(2π)4

∫
d4k

e−ikµzµ

k2
.

Looks like what we did for Poisson, but here k2 = 0 is
more difficult, as it requires only k2

0 = ~k 2, not ~k = 0.
For Poisson, trouble from ~k = 0 gives ambiguity of
ψ = V0 + ~r · ~C, a uniform ~E and ambiguous constant in Φ.
For wave equation: arbitrary waves satisfying free wave
equation.
Deform the integration path to resolve the singularities.
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Disambiguate with Contour choice

Clarify ambiguity by specifying how to avoid the
singularities and writing

D(z) = − 1
(2π)4

∫
d3kei

~k·~z
∫

Γ
dk0

e−ik0z0

k2
0 − |~k|2

.

Specifying contour
Γ’s avoidance of the
poles at k0 = ±|~k|.
Three such con-
tours are shown.
Integrand analytic
except at poles so
the contours may
be deformed while
avoiding the poles.

r

a
F

0
k

The retarded (r), advanced
(a), and Feynman (F ) con-
tours for defining the Green’s
function.
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Retarded Green’s function
Consider D for contour r. If source at x′ = 0, and we look
for A later, z0 > 0. Close contour in lower half plane,
where

∣∣∣e−ik0z0
∣∣∣ = e−|Im k0|z0 −→

|k|→∞
0, so this semicircle

adds nothing. So D = −2πi times the sum of the
residues. minus because clockwise. The residues are

Res
k0=|~k|

e−ik0z0

(k0 + |~k|)(k0 − |~k|)
+ Res

k0=−|~k|
e−ik0z0

(k0 + |~k|)(k0 − |~k|)

=
e−i|~k|z0

2|~k|
+
ei|~k|z0

−2|~k|
= −isin(|~k|z0)

|~k|
.

But if z0 < 0 close in upper half plane, no residues,
D = 0, so all together

Dr(z) =
Θ(z0)
(2π)3

∫
d3kei

~k·~z sin(|~k|z0)

|~k|
.

D is rotationally invariant, so we may choose the North
pole along ~z using spherical coordinates.
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We get

Dr(z) =
Θ(z0)
(2π)2

∫ ∞

0
k2 dk dθ sin θ eikR cos θ sin(kz0)

k

=
Θ(z0)
2π2R

∫ ∞

0
dk sin(kR) sin(kz0),

where R = |~z|.
This is the retarded Green’s function aka causal, as the
effects on Aµ of the source are felt only after the source
acts.

The contour a gives the advanced Green’s function useful
only if you want to configure an incoming field which
would magically be totally dissolved by a given source.

Finally the contour F gives the Feynman propagator,
which is used in quantum field theory.
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Simplifying D
We may simplify Dr by noting

sin(kR) sin(kz0) =
1
2

[
cos(k(R− z0))− cos(k(R+ z0))

]
=

1
4

[
ei(z0−R)k − ei(z0+R)k + ei(z0−R)(−k)

+ei(z0−R)(−k)
]

so Dr(z) =
Θ(z0)
8π2R

∫ ∞

−∞
dk

[
ei(z0−R)k − ei(z0+R)k

]

=
Θ(z0)
4πR

[δ(z0 −R)− δ(z0 +R)]

=
Θ(z0)
4πR

δ(z0 −R),

where the second δ was dropped because both z0 and R
are positive. So the Green’s function only contributes
when the source and effect are separated by a lightlike
path, with ∆z0 = |∆~z|.
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Full solution for Aµ

So how do we describe the field when we know what the
sources are throughout space-time? We can use any of the
Green’s functions to get the inhomogeneous contribution,
and then allow for an arbitrary solution of the
homogeneous equation. Thus we can write

Aµ = Aµ
in(x) +

4π
c

∫
d4x′Dr(x− x′)Jµ(x′)

= Aµ
out(x) +

4π
c

∫
d4x′Da(x− x′)Jµ(x′).

If the sources are confined to some finite region of
space-time, there will be no contribution from Dr at times
earlier than the first source, and Aµ

in(x) describes the
fields before that time. Also after the last time that the
source influences things, the field will be given by Aµ

out(x)
alone.
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Radiation Field.

Of course the source may be persistent, for example if
there is a net charge, but we may often consider that the
effect of the source is confined to the change from Aµ

in(x)
to Aµ

out(x). Then we define the radiation field to be

Aµ

rad(x) = Aµ
out(x)−Aµ

in(x) =
4π
c

∫
d4x′D(x− x′)Jµ(x′),

where D(z) := Dr(z)−Da(z).
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Better expression for Jµ from charges

The expression we wrote earlier for the current density of
a point charge,

Jρ = qiγ
−1
i Uρ

i δ
3(~x− ~xi)

can be written in this four-dimensional language as

Jρ(xµ) = qi

∫
dtδ(t− x0/c)γ−1

i Uρ
i δ

3(~x− ~xi(t))

= qic

∫
dτδ4(xµ − xµ

i (τ))Uρ
i ,

where τ measures proper time along the path of the
particle.


