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Last time we discussed a small scatterer at origin. Magnetism
Interesting effects come from many small scatterers Shapiro

occupying a region of size d large compared to A\. The
scatterer j at position Z; has an Einc with an extra factor
of €% and in the scattered wave, 7 needs to be
replaced by 7 — Z;. Assuming
we are observing from far away,
|F] > d, the variations of the r
in the denominator or the #’s are
not important, but the effect in
the oscillating exponential is, and
we should approximate

ikl

~ ezkre—zkr-a:j

So the amplitude for the scattered wave due to j has an

extra factor of

ezkni-mj —tkf-Z; _ T

. with §= k(R — 7).
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The amplitudes for all the scatterers need to be added S
before squaring to find the flux, so we have Blecnetisn
Shapiro
2
do ]{4 * % iG-T s
— = € -pj+ (F x€F)-my/cl el
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If all the scatterers react the same way, p; and m; can be
factored out of the sum, and we appear to have a single
scatterer with a structure factor

2

F@)= |3 0] =3 ) e,
j T

The nature of F(¢) depends on how the scatterers are
distributed.



Structure Factor

» Large number of randomly positioned scatterers:
phases random — superposition incoherent.
Only the terms with ¢ = j contribute, F(q) = N,
except for ¢ = 0. Coherent scattering ~ N2, so
incoherent scattering is very faint.

» Crystaline structure: with a regular array we can get
even less scattering.
Consider a one dimensional array of N scatterers
each displaced by @ from the previous.
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=N V(g a/2)7

For lattice spacings a < A but total extent Na > A,
the fraction is (sinx/x)? for x = N¢- @/2. x> 1 and
(sinz/x)? < 1 unless ¢- @ is comparable or smaller
than 1/N.
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So except for forward scattering, we have destructive et

interference. Meanstism
In three dimensions, the same thing happens unless the
Bragg condition holds for some pair of scatterers,

q- d = 2nr for some d the separation between two
scatterers, not too far apart. In that case there will be
some fraction of N interfering constructively, and the
structure factor will be proportional to N2. But if the
lattice spacing is much less than A, this will happen only
for forward scattering.

So a perfect crystal with a < A is ~ uniform material with
permittivity € and permeability p, without scattering.
But suppose small fluctuations,

Shapiro

€ = €é+¢e(D),
po= fg+op().



Applying Maxwell Spamg 2010

Maxwell in medium but without sources applies: S
AS V . D = 0’ Magnetism
Shapiro
V2D = 6( ) —Vx(VxD)
T
o5
ot
— 83 8 = — — 8 — -
last Vx-—— = 6=V (B—‘H) al o« i
ast term: €V X 5 eV X nH) + e, ¥ x

So altogether,
*?D -

V2Dl = G (V< (D - EE)+e§tvx (B ).



This equation is exact. Good approximations: de, du
small treat to first order, as sources. Can treat full field
D as harmonic, oc e~®* so D satlsﬁes inhomogeneous
Helmholtz equation with k? := fiew?, and all fields
perturbations on an incident plane wave

[jinc(f) = D‘ieikﬁi.f
> — _ la — —
Binc(x) = z i X Dinc($)7

the fields in the source term, to first order in the
variations, will be

[j_gE = Z_jinc(f)

é —pH = ginc(f)
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the correction will then be the scattered wave given by
the Green’s function

'l

. . 1 eik|f—a_c'
D — D; = — d3l'/ﬁ
e 47 |7 — 2|

x{lﬁ' x V' x (5e(a?’)51nc(f’)>
€

1w = N
+7vl X (5N(x,)Binc(xl))}

Integration by parts: Note! fv Vx A= fS ixA—0if A

vanishes sufficiently at infinity, and therefore
[, & F@E) x AE') ~ — [, 2 (ﬁf(f')) x A@").
For the Bj,. term, f(Z') is the Green function,

N .
. /ezk\x Z| _elkR

= —R—r [ikR - 1], with R = & — 2/

|7’ — 7|

1See lecture notes
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For the Dj, . term, we also need Physics 504,
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/ d?’x/f(i"/)ﬁl X 6/ X A‘(i:/) Magnetism
v

Shapiro
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Again f(Z') = e*l¥'=7 /|2’ — Z| is the Green’s function for
V2 + k2, so for the second term, outside the region of

scattering (where we can ignore the 6(Z — ') term) we
have k2 [{, B A(2") e =T |3 — 7.



For large r, we have

, and

B s L
1
— = 1
‘f/ _ f‘ //r"
V' o= _%feikrefikr“-f’
r
- - K. o . s
(A-9) (V') = =% Areihremitre,
r
So altogether
. . eikr .
D = Djpe + —Asc,
where
- k2 o [ (@) —
A - d3 ! —ikr-Z (AXD'
sc 47r/ re z r inc(
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The differential cross section for light with polarization €

is
sk e 2
do € Asc
aQ = PP
Dinc
2
_ li B! TE
47
=/
{q* L 0e(Z
€ €
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Blue Sky B

Electricity
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Our first application is to consider molecules in a dilute Magnotism
gas as a fluctuation in € from the vacuum at a point. With Shaoi
apiro

an induced dipole moment p; = eofymolﬁ(fj) we have

Se = eo Z'ym015(5:’ — 7))
J

and we assume no magnetic moments, so o = 0. Then

do k4

0" 162 Yol * 1€7 - &1° F(@)

where for a dilute gas we have an incoherent sum and

F (@) is the number of scattering molecules, except for

q = 0, the forward direction.

For the dilute gas as a whole the dielectric constant

er = €/€g = 1 + Ny 01, where N is the number density of
molecules.
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o= ———le, — 1 E dQ|€F X €
16772N2 ‘ " ’ = / ’ Z‘ Shapiro
€

The polarization factor is

Sk o (% o ) e
Yel@ -€)(€ &) =1—1|F-&|°, as D €€y + 7Tk = Oj.
Consider light incident in the z direction with €; = %, so
7 - €= sinf cos ¢, and the integral

T 2T
/dmg* x &l :/ sinoda/ d¢(1—sin? 0 cos? ¢) = 87/3,
0 0

and

]434
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gz
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where n = /¢, is assumed to deviate only slightly from 1.
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The intensity of the beam I(z) = I(0)e™** falls BRI
exponentially with distance with the attenuation Shapiro

coefficient o due to the scattering. In a slice of width dz,
there are Ndz scatterers per unit area, each scattering an
area o of the beam, so there is a fractional loss of Nodz
in distance dz, and

4
=No~ —— —1 2 .
! 0N |n — 1]
This is Rayleigh scattering. Note that it is a method of
determining the number of molecules, so an approach
which was used historically to determine Avagadro’s
number.
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In the previous discussion we assumed no corrolation in
the positions of the scatterers. This is not a good
approximation in denser fluids. A better approximation is
to consider € to be the mean permittivity of the fluid but
take into account density fluctuations. From the
Clausius-Mossotti relation (J4.70) we have

Shapiro

_ 3+ 2Nyl N der 9ol (&—1)(e+2)

€ - ’
" 3= Nvmol AN (3=Nvpol)? 3N
so the variation of € in a region of fluid with varying
density is
ﬁ _ (er — 1)(er + 2)5]\7.
€0 3N

How do we evaluate dIN?




Physics 504,
Spring 2010

Electricity
. . o1 . . . and
In a fluid in equilibrium with a reservoir at constant Magnetism
pressure and temperature, the probability that a given Shapiro

piece of fluid occupies a volume V is exp —G(V)/kpT,
where G is the Gibbs free energy and kp is Boltzmann’s
constant.

In terms of the? isothermal compressibility

1 /0V 92a\
ﬂT—v<ap>T‘<Vav2) °

the mean square deviation of ((AV)2) = kgT(V)fBr, and

((AN)?) = kgT(N?/V)pr.

2See Reif, p300



So the total (for all the particles in the volume)
differential cross section is

do k4 3 i
- - igzd
NV<dQ> orz €&l <’/d

k4 B _,‘|2 e — 1)(e + 2)
1672 ’ 3Ne,

/d3 /d%’ew EE) (SN (F)ON(3")).

If we assume the correlation length for density
fluctuations is much less than the wavelength, we may
take €/7(@=%') ~ 1 and the integrals give

V{(6N)?) = N2kgTpBr.
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As for the blue sky, the attenuation coefficient is just

a = No and the angular integral is
[dQY.|é" - &) = 8n/3, so

(e — 1) (e +2)
— NkgT
@ 6T N 3€, sTr
4 2
wt |(er — 1)(er +2)
— NkgT By
6N 3 sTfr

The most important feature of this is that at the critical

point the compressibility Sr blows up, so the fluid
becomes opalescent.

I am going to skip the sections on diffraction. This has

been or is covered in our optics courses.
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