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Sources of Electromagnetic Fields

We now start to discuss radiation in free space.

We will reorder the material of Chapter 9, bringing
sections 6 and 7 up front.

We will also cover some of §6.4, on Green functions, which
T understand you skipped last fall in 503.

Assume a set of charges with given motion.

What fields do they generate? — (~ wave-guide last time)
We are ignoring back-reaction, the changes in their
motion due to the fields. Therefore linearity.

So we can fourier-transform in time.
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For our fourier mode, 9/t — —iw, so each component of
A and @ satisfy

(V2 + k%) O (&) = —s(), (1)
with & = w/¢, and a with the prescribed source s().

Solution by Green function, from §6.4. Let us review this.
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The Basic Equations

Consider one fourier component, with all fields having a
time dependence e
They are generated by the fourier components

—iwt

(,—.‘)efiwt7

(i)efiwtl

p(Z,t)
J(&,t)
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>

The fields E(i’, t) and ﬁ(f, t) generated by these charges
and currents may be described by the electrostatic
potential ®(Z,t) and the vector potential A(Z,t).
But as discussed in §6.2, ® and A have a
gauge-invariance. To determine them, need Maxwell’s
equations and a gauge condition.
- - 109

Choose Lorenz Gauge: V - A+ 20 0. Then the fields

c
A and ® are determined.

Solution by Green function
(V2 + k%) (%) = —s(%) is (inhomogeneously) linear in W,
so solution is sum of solutions of the homogeneous
Helmholtz equation and specific solutions for “each piece”
of the source. The equation is an elliptic partial
differential equation, having a unique solution once
boundary conditions are specified.
Think of the source as a sum of pieces at each point,

s(7) = /di’s(:ﬁ’)&s(i’ —7),

and solve for a delta function source with the Green
function

(V2+K%) G(7,7') = —83(7 — 7). (2)
Then the solution for ¥ is

U(F) = /d%’s(z’)c(f,f’).

(VZ+E)Wo = (VW) +2(VW)- (Vo) + W (V20)

+E2W ¢
= 2R ik T 2 4w (@)
|| lz[
= —4n03(Z)

as W(2)63(Z) = W (0)8* (&) = 63(2).

. Wo ej:ikm
So for &' =0, G(Z,0) = —— = .

( 4r 47|
But the operator (V + k2) is translation-invariant, so we

may translate:

otik|i-7|
G(Z,3") = == 3)

T dm|E -7

‘We’ve ignored boundary conditions. Want outgoing waves
only. Choose upper sign.
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In Spherical Coordinates Ehysics 504,
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We are often interested in sources confined to a compact Magnetism
area and how it radiates out to large distances. Spherical Shapiro
coordinates are most suitable. .
s 32 20 1 9 ifurc;s in
In spherical coordinates V 5+t -5-— 5L and ©ee Space
T oor ror

S —i') = J "&(0 — 0)3(¢ — ¢') due to the
2 sin

metric factors h;, From the completeness relation (J3.56)

for the spherical harmonics, the angular part of the delta

function can be written as a sum, and we have

2
(a— + 20 _ 7—L2 + k2> G(&,7")

or:  ror
4
6(T_T/) = Y
- r2 Z Z }/Z’;n(e 7¢ )n7n(07 ¢))7
=0 m=—{
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Sources in
ge(ryr") = by(r (k’r for r > 1. Free Space
But from (3) we see that the O
Green’s function is symmetric 7,3)="
Y G(&,27) wE =7 ®3)

under ¥ « #’,
so ap(r) = a(ghil)(kr) and by(r) = agje(kr), and we may
write more generally

ge(r, 1) = agjelkr)hS" (krs),

where 7< is the smaller of » and 7" and r~ is the greater.
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So all together
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We are now ready to examine the solutions to the
Helmholtz equation,

” Ho/diljﬂ/ k‘TTl‘

—Wokz / @2 jo(kr OB (ks ) Vi (0. & Vi (0.6) T (&),

Writing G(Z, z") Z R (1, 2") Y0 (0, 6), we have
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=0 m=—¢
so we see that R(r,Z") = >, go(r, 7)Yy, (0, ¢') where
% 20 LU+1) , 1 ,
(W+;$*T+k >ge(7‘,7")—7ﬁ(5(7‘77‘).

For r # r' this is just the spherical Bessel equation, so the
solutions are combinations of jy(kr) and ng(kr), or better

of jy(kr) and hél) = jo(kr) + ing(kr) i (=i) etk fher,
T

For r < 1" we need the solution to be regular at r = 0, so
there are no n or h contributions, only jg,

ge(ryr") = ag(r')je(kr) for r < 7’,

The delta function source for the spherical Bessel equation . .. soa,
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= agkjo(kr)h) D (kr) — agkh() (kr)j) (kr). o
This is kay times the Wronskian of hél) and jp, which Free Space
should be —/~2. This agrees with the general statement
that the Wronskian satisfies dW/dr = —P(r)W, where
P(r) is the coefficient of the first order term, here 2/r.
Thus we can determine ay at any point 7/, and as Jackson

3.89-90 tells us for small z,

) = o)~ e ()

\/7N/+1/2 - F(“‘1/2)< >H1%7

= Jo+ing — iny,

ne(x)
)

S0 j((T‘)hé(l)(k"l‘) - hé (r)]é(kr) — i/(kr)?, and ag = ik.
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r>d, then r- = ¢’ and r~ = r, and
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A(@) = ipokY_ b (kr)Yom (6, ) / Pl jo(kr' Y5 (0, ¢) T ().

m

We see that A has an expansion in specified modes (¢, m)
with the sources only determining the coefficients of these
modes. If the source region is small compared to the
wavelength, d < A = 27 /k = 2mc/w, we have kr' < 1
whereever ] ") # 0, so we may use the expansion
Je(x) = x[/(% + 1)!!, appropriate for z < 1. We see that
the lowest £ value which contributes will dominate.



Zones (Jackson §9.1)

We have derived a quite general expression for the fields,
but we can almost always find ourselves in a zone for
which things simplify, depending on the relative sizes of d,
A, and r.

If d and r are both much smaller than A, we are in the
near zone, we may set k = 0 while setting

Kie(kr <)) (kr >) to iy er. The fields are essentially
instantaneously generated by the currents and charges. If,
in addition we assume d < r, the lowest ¢ value will
dominate.

If r > X and r > d, the fields oscillate rapidly with
h,gl)(kr) — (=) e /7, falling off only as 1/r, typical of
radiation fields, and this is called the far or radiation
zone. If we also have d < A, kr. is small whereever .J
doesn’t vanish, and the lowest £ mode will dominate.

Electric Dipole

Now let us consider the zone d < A < r, which should be
dominated by the lowest £. If the £ = 0 term does not
vanish, we may write

A@) =~ ipokh) (kr)Yoo / Pa'Yg T (3
_ poe™ / 3, (7!
= d>a' J(Z"),
because h(()l)(z) = —ie /z. We are assuming all sources

have an e~*! time dependence, so the continuity equation

tells us V - .J = —0p/Ot = iwp, we may write!

[d3a' J(#') = —iw [ d*' #'p(Z'). The integral is just the
WOW ﬂeikr

4 U

electric dipole moment, so /Y(a?) ~

!See the lecture notes for some algebra justifying this and the
messy expression for £ below.

Note the first term in £ is perpendicular to Z, but the
second is not. However this longitudinal term falls off as
r~2, so may be neglected in the radiation zone r > X,
where we can write

L2 ik in the
=i FX P radiation
T r
L2k B zone
E:Wﬁx(ﬁxﬁ):fngxH

In the near zone, that is when d < r < A\, we have

1 in the near zone

The electric field in the near zone is just what we would
have from a static dipole of the present value at each
moment, and the E field dominates the H field in this
zone.
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We have not bothered to find ®(#) because the Lorenz
gauge —iw®d/c? = -V-A gives it in terms of A, except for
w = 0, for which ®(Z) is given by the static Coulomb
expression integrated over all the charges, the electric
field is given by Coulombs law, and there is no magnetic
field arising from ®.

z

That expression, A(Z) ~ —ipw et /A, is accurate for
all » > d to lowest order in d/\, provided the dipole
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Quite generally, H = —V x A, while outside the region Shap
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with sources,
oD Lo L iZy= -
E:—iweoE=V><H=>E=TOV><H, R

with Zy = \/po/€o. The curl of pif(r) is 7 x pdf/dr, so

for our electric dipole source, we have?

- ck? 1 er
H=""ixp(1-—
47r7“><p< ikr) r’

and

elkr

{%%ﬁx(fxﬁ)+[3f(f"5)*’3]<lfik>}'

E@) =

dmegr r2 r

2See lecture notes for algebra details.

Power radiated at large distances:
average power per unit solid angle is
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00 7 Re? (E x H") S(ir)? |7 x (7 x p)| —
Z062k4 2 2 Z062k4 2 .. 92
= 5o P (1 —cos®0) = 39,2 P sin 0,
E D

where 6 is the angle between j
and #. The total power radiated
is

(P

(P) = 27r/0 do sin@—Q

Z ,2]64 T
= Zer p? / do sin® 0
167 0
Z062k4 P
127 ’




Next order, / =1

If ¢ = 0 vanishes, need ¢ = 1 term in the expansion,

m=1

A = ipokhD (kr) 3 Yim (6, 6) / d*alj (k') Y7, (60, ¢') T(@).
m=—1
With
W (z) = e 1+ 1 . (@)= : (1+02?)
1 - z ) 3 ’

and

m=1 3 ~

D Vim0, )Y (0, 8) = 77,

m=—1

we see that 3
= 3 1eihr i -
(1):4 2o e v 30 2l T
A W0k4ﬂ_3 . <1+kr>/dxr 2'J(@").

3T disagree with Jackson 9.30 by an overall sign

Again, Qij = é/ddﬂi/ (332;J1 + 31‘;J] — 2(:?, . J)(SU)
So i - Q=3 1iQijé; =
5/ P (36 J@) T + 30 & T@) - 28 T@ ).

For completeness we need to consider a electric monopole
term

.3//2 =/ 2i.3/~/”
Mg = | &2'2a"p(Z') = — [ d&°2'2"- J.

w

So our complete ¢ = 1 vector potential is

ikr
A —

i#ok e
24w r

b

(1 + é) (67 X 171 + iwf - Q + iwMpF).

Let us evaluate H and £ only to leading order in 1/r, so
we need only consider the derivative acting on e, and
needn’t worry about V x 7. We can also drop the i/kr

term.

Electric Quadripole

One might be tempted to think the electric quadripole
also vanishes, as it involves 7 x (7 - Q), and Q is
symmetric. But that is incorrect: in

7 x (7 Q) = €jkfiQjeeéy, the summands are
symmetric under i <> ¢ and antisymmetric under i < j,
but that does not make things vanish. Jackson defines the
vector Q(ﬁ) =Y Q4n;jé;, and then we have 7 x @(f)
Then again keeping only 1/ terms,

. ick3 eikr . o

R )

. —iZ k3 ikr N
Bra = %%r x (r x Q(f)) .
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the magnetic dipole moment.
1 - -
: P = o /d%' [ T@ha' - - a)J(@")] .

The symmetric piece is related to the electric quadripole
moment

Qij = /d3z' (3’1‘:1‘; - z'25ij) (2
. —ia -

- /d“x' (3ajaf — 2'26;) -V
= %/d3ll(]k(i‘,)6,; (31;1; - ”IQ(S,‘]‘)

= 5 /dg,TJ/Jk(f() (3(51kT; + 35]kT2 — 2T;C(5U)
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Bl Then HY = iﬁ x AW
Magnetism 1o
Shapiro K2 ik
iy 7 x (67 X m + iwr - Q + iwMp?).
Notice that the electric monopole vanishes due to
¢ 7 x 7 = 0. The magnetic dipole contributes
N k2 ikr
o= D8 h s (p xom),
4 7
. iZ = kQZ ikr
B = SRV B = - =20 (5 x (7 )
k2Z0 elk’l‘
= I m.

These are of the same form as for the electric dipole, but
with E and H interchanged. The radiation pattern is the
same, but the polarization has ELlm here, while E lies
in the plane including 7 and p for the electric dipole.
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Power radiated

Probably the most interesting thing one might ask is how
much power is radiated, and in which directions, as we
did for the electric dipole.

Shapiro

For an electric quadripole, |Q| is
a symmetric real traceless tensor,
e so we could rotate the coordinate
system so that it will be diagonal.
If we take an axially symmetric
case, with Q.. = —2Q., > 0.
The average power per unit solid

angle is
<P> _ ,',.2 ~ nl r7%
o - 3 Rer- (E x HY)

as shown.
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