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We now start to discuss radiation in free space.

We will reorder the material of Chapter 9, bringing
sections 6 and 7 up front.

We will also cover some of §6.4, on Green functions, which
I understand you skipped last fall in 503.

Assume a set of charges with given motion.

What fields do they generate?  (~ wave-guide last time)
We are ignoring back-reaction, the changes in their
motion due to the fields. Therefore linearity.

So we can fourier-transform in time.



The Basic Equations Speing 2010

Electricity
. . . . and
Consider one fourier component, with all fields having a Magnetism
time dependence e~**. Shapiro

They are generated by the fourier components

Sources in

. Free Space
p(@,t) = p(@)e ™, )
J(Zt) = J@)e ™.

The fields E(Z,t) and H(Z,t) generated by these charges
and currents may be described by the electrostatic
potential ®(Z,¢) and the vector potential A(Z,t).

But as discussed in §6.2, ® and A have a
gauge-invariance. To determine them, need Maxwell’s
equations and a gauge condition.

- - 10d
Choose Lorenz Gauge: V - A+ 2 = 0. Then the fields
c

A and ® are determined.



Then from §6.2,
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For our fourier mode, 9/0t — —iw, so each component of

A and satisfy

(V2 + k%) () = —s(), (1)

with & = w/e, and a with the prescribed source s(Z).

Solution by Green function, from §6.4. Let us review this.



Solution by Green function
(V? + k) ¥(%) = —s(%) is (inhomogeneously) linear in ¥,
so solution is sum of solutions of the homogeneous
Helmholtz equation and specific solutions for “each piece”
of the source. The equation is an elliptic partial
differential equation, having a unique solution once
boundary conditions are specified.
Think of the source as a sum of pieces at each point,

s(Z) = /df’s(f’)é?’(f’ — I),

and solve for a delta function source with the Green
function

(V2 + k) G@,3) = 537 - ). (2)
Then the solution for ¥ is

U(F) = /d?’f's(f’)c;(f,f’).
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Finding G(7,7’)

A point charge at origin: V(&) =

L 7
- V=g
47Teo|:c]3’

So we see ¢(T) = Tl

has V(Z)

9
4meg|x|

V-E=-V2V = ¢8().

‘ ’37 V2¢_ _47T63( )

On the other hand, W := ekl satisfies VIV = :I:zk:—W

and
W= |k [ F
|z|
_ [iik(g
|z|
Thus

(V2+ k) Wo = (V2W

]

)¢ +2(VW) - (Vo) + W (Vi)
+E2W ¢
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(V+R)Wo = (ViW)o+2(VW)- (Vo) +W (Vag)  Pir™

Magnetism

+k2w¢
f Shapiro
= | ’W¢ 2@k:| |W W—MW&?’( 7)
Sources in
Free Space
= —47n03() ’

as W(2)8%(z) = W (0)83(@) = 6%(3).

W¢ eiik|x\

for ' = 7,0 = :
So for ' =0, G(Z,0 p pEp

)=
But the operator (V2 + k?) is translation-invariant, so we
may translate:

EiklF—3|
-

We’ve ignored boundary conditions. Want outgoing waves
only. Choose upper sign.



In Spherical Coordinates

We are often interested in sources confined to a compact
area and how it radiates out to large distances. Spherical
coordinates are most suitable.

? 20 1
. . 2 _ v = 2
In spherical coorldmates V© = 52 + o 7“2L and
37 =/ _ ) o ot h
(-7 r2sin95(r )00 — 0")0(¢p — ¢') due to the

metric factors h;, From the completeness relation (J3.56)
for the spherical harmonics, the angular part of the delta
function can be written as a sum, and we have

<a2 20 1

or?2  ror r?

Physics 504,
Spring 2010
Electricity
and
Magnetism

Shapiro

Sources in
Free Space



Writing G(Z,7') = Z R (1,2") Yy (0, ¢), we have Physics 504,
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a5t oo = 5 + k) Rem(r,2) Yo (6,
; <87’2 + T (97’ 7"2 + ¢ (/r . ) ¢ ( (b) Shapiro
1 , i"ourcses in
Y CR)IDIRTACRT NI
=0 m=—/

so we see that R(r,Z') =", gi(r,7")Y,: (0, ¢') where

2 20 4(L+1 1
<8T‘2+’I“(97’_ (’1“2 )+k2) gg(T,T’):—ﬁ5(T—T/).

For r # r’ this is just the spherical Bessel equation, so the
solutions are combinations of je(kr) and ng(kr), or better

of jy(kr) and hél) = je(kr) + ing(kr) .y (=)Lt Jkr.
r>>

For r < r’ we need the solution to be regular at r = 0, so
there are no n or h contributions, only jy,

ge(r,r") = ag(r')je(kr) for r <1/,
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while for r > 1/ we want only outgoing waves, with et Magnetism
L 1) . 2 .
so the solution is pure hé ) with no hé ) (or j¢) Shapiro
N __ / (1) / Sources in
ge(r, ") = be(r") by (kr) for r > 1. e e

But from (3) we see that the T

Green’s function is symmetric G(Z 3 )= (3)
. =, 4dm|Z — 2|

under & « T/,

so ay(r) = aghgl)(kr) and by(r) = agje(kr), and we may

write more generally

ge(r,1") = aggo(kr)h (krs),

where r. is the smaller of r and r’ and 7~ is the greater.



The delta function source for the spherical Bessel equation Phyei
ysics 504,
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on gy(r,r") means the first derivative is discontinuous, it
1 and

92(7":7"/"’6) - 92(74:7",—6) = _ﬁ Magnetism

= aghjo(kr)h, (kr) — agkhSD (kr) j(kr).

Shapiro

Sources in
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This is kay times the Wronskian of hél) and jy, which
should be —r/ ~2. This agrees with the general statement
that the Wronskian satisfies dW/dr = —P(r)W, where
P(r) is the coefficient of the first order term, here 2/r.
Thus we can determine a, at any point 7/, and as Jackson
3.89-90 tells us for small z,

Je(w) = \/ZJ£+1/2(37) — M\f?)m (g)£7

p l+1
) = g Nt — vy (2) T

) = Je+ing — inyg,

so je(ryh, M (k) — bV () gy (kr) — i/ (kr)2, and ag = ik.



Green function in spherical coordinates

So all together

ciklE—7|
GF@-7") =

Am|Z — 2|

= ik de ker )R (kro) Y7 (6, 8 Yo (0, 6).

We are now ready to examine the solutions to the

Helmholtz equation,
ik|T—2|

T Ko 21 €
A(.CL‘) = M/d3xlj($/)w

= ipoky / A jo(kr DY (k) Yo (0, &) Yo (9, 6) T ().

Im
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If the sources are restricted to some region |Z’| < d, and Magnetism
we are asking about positions further from the origin, Shapiro

r > d, then r- =1’ and r~ = r, and
Sources in
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=

= kaZh (kr) Yo (0 QS)/d?’:c’jg(kr/)n’:n(H/,qb’) @".

We see that A has an expansion in specified modes (£, m)
with the sources only determining the coefficients of these
modes. If the source region is small compared to the
wavelength, d < A\ = 27 /k = 2mc/w, we have kr’ < 1
whereever J(Z') # 0, so we may use the expansion

jeo(x) = 2f/(2¢ + 1)1, appropriate for x < 1. We see that
the lowest ¢ value which contributes will dominate.
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We have derived a quite general expression for the fields,

but we can almost always find ourselves in a zone for Siewie
which things simplify, depending on the relative sizes of d, courens |
)\7 and r. Free Space

If d and r are both much smaller than A, we are in the
near zone, we may set k = 0 while setting

. Z
kjg(kr@hél)(kr >) to %_le T The fields are essentially

instantaneously generated by the currents and charges. If,
in addition we assume d < r, the lowest ¢ value will
dominate.

If » > X and r > d, the fields oscillate rapidly with
hgl)(kr) — (=)L /1 falling off only as 1/r, typical of
radiation fields, and this is called the far or radiation
zone. If we also have d < A, kr. is small whereever J
doesn’t vanish, and the lowest £ mode will dominate.
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We have not bothered to find (&) because the Lorenz
gauge —iw®/c? = =_V-A gives it in terms of A, except for
w = 0, for which ®(&) is given by the static Coulomb
expression integrated over all the charges, the electric
field is given by Coulombs law, and there is no magnetic
field arising from ®.

Zones



Electric Dipole Cooae 3010
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Now let us consider the zone d < A < r, which should be Magnetism
dominated by the lowest ¢. If the £ = 0 term does not Shapiro
vanish, we may write
g(f) =~ iuokhél) (]{JT‘)}/OQ/dg.T/YOBj(f/) Electric Dipole

ikr
= T)e/d3x’J(5c"),
m T

because h(()l)(:c) = —ie /x. We are assuming all sources
have an e~™?* time dependence, so the continuity equation
tells us V - J = —9p/dt = iwp, we may write!

[d3x' J(2") = —iw [ d®2' Z'p(Z'). The integral is just the
Z/L[)OJ e zkr

47 b T

electric dipole moment, so A(:Z") ~ —

1See the lecture notes for some algebra justifying this and the
messy expression for F below.



. 2\ o . > ikr .
That expression, A(Z) ~ —ipow pe*™ /4nr, is accurate for Physics 504,

all r > d to lowest order in d/\, provided the dipole SR
ectricity
moment isn’t zero. and

Magnetism

S0l o
Quite generally, H = —V x A, while outside the region

. IU’O Shapiro
with sources,

— —
Electric Dipole
V x H,

with Zy = \/po/€o. The curl of pif(r) is 7 x pof/0r, so

for our electric dipole source, we have?

47 ikr r
and
5@ = o L owe )+ 30—
x—47760r 7 x (F X p Fr-p)—p = " .

2See lecture notes for algebra details.



Note the first term in E is perpendicular to Z, but the
second is not. However this longitudinal term falls off as
r~2, so may be neglected in the radiation zone r > A,

where we can write

. Ck?z eikr in the
= —7Xp radiation
T T
2 ikr zone
—k“e

E = e Px (F X P) = —ZoF x H

In the near zone, that is when d < r < A, we have

1 in the near zone

The electric field in the near zone is just what we would
have from a static dipole of the present value at each
moment, and the F field dominates the H field in this
zone.
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Power radiated at large distances: e B

average power per unit solid angle is et
and
<P> 7’2 N - oyl ZOCQk4 ~ ~ 2 Magnetism
~L = —Rer - (ExH")Y~ ——|Fx(Ffx
dQ 2 ( ) 2 (47T)2 ‘ ( m ’ Shapiro
2062]{74 9 2 ZOCQk4 2 12
Wp (1—COS 0) :Wp S11 0,

Electric Dipole

where 6 is the angle between p’
and Z. The total power radiated
is

(Py = 27r/07rd9 sinﬁﬂ

ds?
ZoC2k‘4 5 0 3
= — do 0
16n P A sin
Z002k4

127




Next order, / =1

If ¢ = 0 vanishes, need £ = 1 term in the expansion,

—

m=1
AV = ipokh (k1) 3" Yim (9, ¢) / a1 (kr')Y7,,, (6, ') J (2").

m=—1

With

m=1
> Vim(0,0)Yi, (0, ¢) = 4if. g

m=—1
we see that 3

. 1 ikr - .
AW 2 pep>Le (1 + Z) /d?’:c’f-f’J(:E’).
T3 r kr

31 disagree with Jackson 9.30 by an overall sign
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The multipole moments involved here are tensors e B

~ Z'J(Z'). The antisymmetric part is the integral of the Sprine 2010
magnetization Maga:;:ism
1 > . o :
M(Z') = 55:" x J(Z'), with m = /d3x'/\/l(x’) Shapiro

the magnetic dipole moment.

1 - -
P = o /d%’ [(f LJ@ENE - (- g/)J(z’)} . Noxt ander,

The symmetric piece is related to the electric quadripole

moment
Qij = /dgzn' (31’;3:; - x'25ij) p(z")
= /d3a:’ (Sx;x; — $/25ij) %Zﬁ T
_ é / B! Jy (710, (32!, — 226,5)

= i / d31,‘/<]k(5_5/) (35%563 + 3(5]]€I; - 2$;c§ij)
w



Again, Q;; = Z)/d%’ (32l J; + 3ajJ; — 2(2" - J)6ij).
So 7 Q=) 7iQijéj =

3 7 —/ S Tr=) _ =/ Tr=/\ A
w/d (3r J(@ @' + 303 J(@) - 27 J(:z:)r).

For completeness we need to consider a electric monopole

ME:/dgzL‘, /2p( ) 22/d3 2! j’
w

So our complete ¢ = 1 vector potential is

term

ikr

A'(l) _ Mok e
2477 r

Let us evaluate H and E only to leading order in 1/r, so
we need only consider the derivative acting on e’*", and
needn’t worry about V x #. We can also drop the i/kr
term.

(1 + kf) (67 x 17 + iwr - Q + iwMgf).
r
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Magnetic Dipole

. 15 -
Then HY = —V x AW
12%)

k‘2 eikr

T 24r 7

Notice that the electric monopole vanishes due to
7 x 7 = 0. The magnetic dipole contributes

P x (67 X 11 + iwf - Q + iwMgF).

. k2 ikr
B = T a7 xom),

. T »
EMP = ZTOV><HMD:—47r rrx(ﬁx(ﬁxm))
]‘JZZ ikr
— 406 P x .
T 7T

These are of the same form as for the electric dipole, but
with E and H interchanged. The radiation pattern is the
same, but the polarization has ELlm here, while E lies
in the plane including 7 and p for the electric dipole.
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One might be tempted to think the electric quadripole Shapiro
also vanishes, as it involves 7 x (7 - Q), and Q is

symmetric. But that is incorrect: in

7 X (7 Q) = €;,7iQjiT¢€k, the summands are

symmetric under i < £ and antisymmetric under i < j, o orden
but that does not make things vanish. Jackson defines the

vector Q(7) := > Qijn;é;, and then we have 7 x Q7).

Then again keeping only 1/r terms,

iCk‘S eikr .

™ T Q(7)

- —iZyck3 etkr ~

EEQ 4 (A " )
sy A Ul Q(r)



Power radiated Physics 504,
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Probably the most interesting thing one might ask is how Magnotism
much power is radiated, and in which directions, as we Shaoi
apiro

did for the electric dipole.

For an electric quadripole, |Q] is
a symmetric real traceless tensor,
so we could rotate the coordinate
system so that it will be diagonal.
If we take an axially symmetric
case, with Q,, = —2Qz, > 0.
The average power per unit solid
angle is

Next order,
2=1i
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