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Fiber Optics
Waves can be guided not only by conductors, but by
dielectrics. Fiber optics cable of silica has n(r) varying
with radius.
Simplest: core radius a with
n = n1, surrounded (radius
b) with n = n0 < n1.
Total internal reflection if

α > αc = sin−1(n0/n1)

α αθ
b

a

Equivalently θ < θmax = cos−1(n0/n1).
This is geometrical optics. Needs λ� a.

Two kinds of fibers:
I multimode, a� λ, treat with geometrical optics.

Typically a ≈ 25µm, b ≈ 75µm, λ ∼ 0.85µm.
I single mode, a ∼ λ, treat as wave guide. Typically
a ≈ 2µm.
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Multimode fibers

Define ∆ =
n2

1 − n2
0

2n2
1

≈ 1− n0

n1
, typically about 0.01.

cos θmax ≈ 1− 1
2θ

2
max = 1−∆, so θmax ≈

√
2∆.

How many modes can propagate?
Uncertainty principle: only one mode can fit per unit

“volume” in phase space, N =
∫ (

dpdq

2π~

)D

for each

mode in D dimensions. Here D = 2, the cross section has
coordinate integral

∫
d2q = πa2. As

|~k⊥| ≤ kz tan θmax = kz

√
2∆,∫

d2p = ~2
∫
d2k = 2π~2k2

z∆. There are two polarizations,
so

N = 2
1

(2π)2

(
πa2
) (

2πk2
z∆
)

=
1
2
V 2,

whereV := ka
√

2∆ is called the fiber parameter.
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Problem with simple fiber

At each angle θ < θmax, light travels indefinitely down
the fiber. But to go a large distance L down the fiber,

θ

it travels a different distance L sec θ, so light from
different θ’s arrive with different phases, and interfere!
Fix: make several transitions
to lower n. In fact, for home-
work (Jackson 8.14) you will
find a “perfect” fix, using n
varying continuously with ra-
dius.

θ
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n(x) varying with radius x
Consider dielectric with ε(~x) varying smoothly, µ = µ0 as
silica is not magnetic. Assume single frequency ω.
Maxwell gives

~∇ · ε ~E = 0 =
(
~∇ε
)
· ~E + ε~∇ · ~E

~∇× ~E = −µ0
∂ ~H

∂t
= iµ0ω ~H

~∇× ~H =
∂ε ~E

∂t
= −iωε ~E

~∇ · ~H = 0.

So
~∇×

(
~∇× ~E

)
= −∇2 ~E + ~∇

(
~∇ · ~E

)
= iµ0ω~∇× ~H

= µ0ω
2ε ~E

= −∇2 ~E − ~∇
(

1
ε

(
~∇ε
)
· ~E
)
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The same for H:
~∇×

(
~∇× ~H

)
= −∇2 ~H + ~∇

(
~∇ · ~H

)
= −iω~∇×

(
ε ~E
)

−∇2 ~H = −iω
(
~∇ε
)
× ~E − iωε~∇× ~E

= −iω
(
~∇ε
)
× ~E + µ0ω

2ε ~H.

Thus ∇2 ~E + µ0ω
2ε ~E + ~∇

(
1
ε

(
~∇ε
)
· ~E
)

= 0

∇2 ~H + µ0ω
2ε ~H − iω

(
~∇ε
)
× ~E = 0

Assume ε varies slowly compared to λ,

∇ε� ε

λ
=
εω

c
.

Other terms are ω2/c2 times E or H, but ∇ε terms are
∇ε/ελ times E, � λ2 = ω2/c2, so they can be ignored.
Both ~E and ~H satisfy(

∇2 +
ω2

c2
n2(~r)

)
ψ(~r) = 0.
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Eikonal

ψ oscillates rapidly (on scale ∼ λ). Take this away by
defining the eikonal S(~r), with

ψ(~r) = eiωS(~r)/c

so ∇2ψ = ~∇ ·
(
iω

c
~∇SeiωS(~r)/c

)
=

[
iω

c
∇2S − i

(ω
c

)2 (
~∇S
)2
]
eiωS(~r)/c

= −(ω2n2/c2)eiωS/c

and n2(~r)− ~∇S · ~∇S = −i c
ω
∇2S. Now c/ω ∼ λ while ∇S

varies with n(~r), much more slowly, so we can set the r.h.s
to zero, for the
Eikonal approximation: ~∇S · ~∇S = n2(~r).
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The Eikonal approximation: ~∇S · ~∇S = n2(~r)
doesn’t give the direction S changes, but does give the
rate.
Define k̂(~r) so ~∇S = n(~r)k̂(~r). Near a point r0,

ψ(~r) ≈ e
iω
(
S(~r0) + (~r − ~r0) · ~∇S

)
/c

= eiωS(~r0)/c eiωk̂ · (~r − ~r0)n(~r)/c,

so it is locally a plane wave with |~k| = ωn(~r)/c.
Consider an integral curve, that is, a ray following ~∇S,
and let s be the distance along that curve. Then
d~r/ds = k̂, n(~r)d~r/ds = ~∇S, so

d

ds

(
n(~r)

d~r

ds

)
=

d

ds
~∇S = ~∇ dS

ds

∣∣∣∣
Γ

= ~∇n(~r). (1)

Meridional rays pass through axis (m = 0 as waves)
skew rays do not, travel helically (m 6= 0 modes).
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We will treat only meridional, effectively in xz plane, with
x a radial direction and z along the fiber. We assume
n(~r) = n(x) independent of z.
Take x and z components of

(1) :
d

ds

(
n(~r)

d~r

ds

)
= ~∇n(~r)

d

ds
(n(x) sin θ) =

dn(x)
dx

,
d

ds
(n(x) cos θ) =

dn(~r)
dz

= 0.

So n(x) cos θ = constant. With θ(0) < θmax ray reaches a
maximum radius xmax with n̄ := n(0) cos θ(0) = n(xmax).

dz

ds
= cos θ =

n̄

n(x)
,

d

ds
=

n̄

n(x)
d

dz
,

so the x component of (1) gives

dn

dx
=

n̄

n(x)
d

dz

(
n(x)

n̄

n(x)
dx

dz

)
=

n̄

n(x)
d

dz

(
n̄
dx

dz

)
,

so n̄2d
2x

dz2
= n(x)

dn(x)
dx

=
1
2
d

dx
n2(x).
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n̄2d
2x

dz2
=

1
2
d

dx
n2(x)

Looks like ma = −dV/dx with potential −1
2n

2(x) and
time z, so as for Newton, multiply by “velocity” dx/dz, to
get

1
2
n̄2 d

dz

(
dx

dz

)2

=
1
2
d

dz
n2(x) =⇒ n̄2

(
dx

dz

)2

︸ ︷︷ ︸
=0 at xmax

= n2(x)−n̄2.

The distance travelled along z in getting from the axis to
x is

z(x) =
∫ x

0

dz

dx
dx = n̄

∫ x

0

dx√
n2(x)− n̄2

,

and the distance from one axis crossing to the next is

Z = 2n̄
∫ xmax

0

dx√
n2(x)− n̄2

.
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The optical distance
∫
n(x)ds between axis crossings is

Lopt = 2
∫ xmax

0
n(x)

ds

dz

dz

dx
dx

= 2
∫ xmax

0
n(x)

n(x)
n̄

n̄√
n2(x)− n̄2

dx

= 2
∫ xmax

0

n2(x)√
n2(x)− n̄2

dx.

Over a long distance L, many axis crossings (L/Z), total

phase change is proportional to L
Lopt

Z . It is ideal if
Lopt

Z
is independent of n̄, for otherwise different rays will
destructively interfere.
You will find the ideal in problem 8.14.
Signals will also degrade with distance if there is
dispersion over the bandwidth of the signal. There is also
some absorption in real dielectrics. These two issues for
silica favor using λ ∼ 1.4µm.
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