Fiber Optics

Waves can be guided not only by conductors, but by
dielectrics. Fiber optics cable of silica has n(r) varying

with radius.

Simplest: core radius a with
n = nq, surrounded (radius
b) with n = ng < n;.

Total internal reflection if

a > o, =sin"Hng/ny)

Equivalently 6 < max = cos™1(ng/n1).
This is geometrical optics. Needs \ < a.

Two kinds of fibers:

a

Jb

» multimode, a > A, treat with geometrical optics.

Typically a ~ 25 ym, b =~ 75 pum, A ~ 0.85 pm.

» single mode, a ~ A, treat as wave guide. Typically

a ~ 2 pm.
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Multimode fibers Al
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Define A = 1720 ~ 1 — —, typically about 0.01. )
2”1 ni Shapiro
COS emax ~1-— %ggnax =1- A, SO QIHaX =~V 2A.
How many modes can propagate? Multimode

Uncertainty principle: only one mode can fit per unit

) . dpdg\ "
volume” in phase space, N = orh for each
T

mode in D dimensions. Here D = 2, the cross section has
coordinate integral [ d?q = ma®. As
‘EJ_| < k. tan Omax = kz\/ﬁa
[d?p =n?* [ d*k = 2mh*k?A. There are two polarizations,
SO

N=2

1 1
e (7ra2) (27T/€§A) = §V2,

whereV := kav/2A is called the fiber parameter.
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At each angle 6 < Opax, light travels indefinitely down
the fiber. But to go a large distance L down the fiber,

Multimode
fibers
0

it travels a different distance Lsec6, so light from
different 0’s arrive with different phases, and interfere!

Shapiro

Fix: make several transitions
to lower n. In fact, for home-
work (Jackson 8.14) you will 5 ~
find a “perfect” fix, using n
varying continuously with ra-
dius.




n(x) varying with radius x
Consider dielectric with €(Z) varying smoothly, © = po as
silica is not magnetic. Assume single frequency w.
Maxwell gives

V.-eE = Oz(ﬁe)-ﬁ—}—eﬁ E
- o OH .
VxE = —Ho tpowH
Vit = XL P
ot
V-H = 0
So
ﬁx(ﬁxﬁ) = —V2E+ﬁ<§-ﬁ>:iuowﬁxﬁ
= ungeﬁ
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The same for H:
V x (ﬁxﬁ) = —V2H+ 6<v H) = —iwV x (eﬁ)
V2H = —iw ﬁe) x E —iweV x E

= —iw (ﬁe) x E + uow2eﬁ.

. L /(1 /= .
Thus  V2E + pow?eE + V ( (Ve) E> -0
€
V2ﬁ+uow26ﬁ — W (66) xE = 0
Assume € varies slowly compared to A,
€w

€

Other terms are w?/c? times E or H, but Ve terms are
Ve/e)\ times E, < A2 = w?/c?, so they can be ignored.
Both E and H satisfy

(v? ) ) =0,
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Eikonal

1 oscillates rapidly (on scale ~ \). Take this away by
defining the eikonal S(7), with

w(,':») — ein(F)/C

so VX = 6-(1006561‘“’5("?)/0)
c
[ Woag (YN (ao)?| iws@ /e
- [eesi(2 @)
_ _(w2n2/02)€in/c

and n2(7) — VS - VS = i V2S. Now ¢/w ~ A while VS
w
varies with n(7), much more slowly, so we can set the r.h.s

to zero, for the
FEikonal approzimation: VS -VS = n*(F).
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The Eikonal approzimation: VS - VS = n?(7) I
doesn’t give the direction S changes, but does give the et

and
rate. R . R Magnetism
Define k(7) so V.S = n(7)k(7). Near a point ro,

Shapiro

iw (S%) +(F—7) - ﬁs) /e

Q

(7)

e

WS (7o) /e jiwk - (7 — 7)n(F) e,

Eikonal

so it is locally a plane wave with |k| = wn(7)/c.
Consider an integral curve, that is, a ray following ] ,
and let s be the distance along that curve. Then
di/ds = k, n(F)d7/ds = VS, so

% (n(F)dF> = Y95 =v P —va@®.

Meridional rays pass through axis (m = 0 as waves)
skew rays do not, travel helically (m # 0 modes).



We will treat only meridional, effectively in zz plane, with 5, -0 = 0,

x a radial direction and z along the fiber. We assume et
n(r) = n(x) independent of z. Mot
Take x and z components of
Shapiro
d dr -
H: — — ) = P
Wi 4 (a0 ) = Fa@
d _ _ dn(x) d _dn(7)

P (n(z)sinf) = ppa P (n(z)cosf) = o 0. Eikonal

So n(z) cos @ = constant. With 6(0) < fmax ray reaches a
maximum radius zmax with 7 :=n(0) cos(0) = n(rmax)-

d cos ) = n 4 _ - 4
ds n(z)’ ds n(z)dz’
so the z component of (1) gives

SO n°—s; =n(x) =




dz  1d
—o0"x _1a o
a2 T 2dz (z)
Looks like ma = —dV/dz with potential —1n?(z) and

time z, so as for Newton, multiply by “velocity” dx/dz, to
get

1 ,d (de\?> 1d , o (dz\® O,
i () =sarm = () =re-
N——

=0 at zmax
The distance travelled along z in getting from the axis to
T is v g " p
z x
z(x):/ dm:n/ —_—
o dx 0 vn?(x) —n?
and the distance from one axis crossing to the next is

rmax d
Z =2n R

0 /n?(x) —n?
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The optical distance f x)ds between axis crossings is Physics 504,
Spring 2010

Electricity
rmax dS dZ and.
L " — 2/ n(:z:)—— d Magnetism
P 0 dZ dm Shapiro
rmax n(w) n
= 2 / n(x)— dzx
0 (=) no\/n?(x) — n?
rmax 2
= 2 n—(.%.) dl‘. Eikonal
0 n?(x) — n?

Over a long distance L, many axis crossings (L/Z), total

P It is ideal if ~OP
: Z

is independent of n, for otherwise different rays will

destructively interfere.

You will find the ideal in problem 8.14.

Signals will also degrade with distance if there is

dispersion over the bandwidth of the signal. There is also

some absorption in real dielectrics. These two issues for

silica favor using A ~ 1.4pum.
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