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Schumann Resonances
Resonant cavities do not need to be cylindrical, of course.
The surface of the Earth (RE ≈ 6400 km) and the
ionosphere (R = RE + h, h ≈ 100 km) form concentric
spheres which are sufficiently good conductors to form a
resonant cavity.
Take ~E, ~H ∝ e−iωt, cavity essentially vacuum.
Z0 =

√
µ0/ε0, c = 1/

√
µ0ε0. Set k = ω/c.

Maxwell:

~∇× ~E = ikZ0
~H, ~∇× ~H = −i k

Z0

~E, ~∇· ~E = 0, ~∇· ~H = 0,

So

~∇×
(
~∇× ~H

)
= ~∇×

(
−i k
Z0

~E

)
= k2 ~H

= ~∇
(
~∇ · ~H

)
︸ ︷︷ ︸

0

−∇2 ~H
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So(
∇2 + k2

)
~H = 0, ~∇ · ~H = 0, and ~E = i

Z0

k
~∇× ~H.

Similiarly we can derive(
∇2 + k2

)
~E = 0, ~∇ · ~E = 0, and ~H = −i 1

kZ0

~∇× ~E.

Each cartesian component obeys Helmholtz, but the
radial component ~r · ~A (for ~A either ~E or ~H) is more
suitable to look at.

∇2(~r · ~A) =
∑
ij

∂2

∂r2i
(rjAj) =

∑
ij

(
rj
∂2

∂r2i
Aj + 2

∂Aj
∂ri

δij

)
= ~r · ∇2 ~A+ 2 ~∇ · ~A︸ ︷︷ ︸

=0 for ~E, ~H

.

so
(
∇2 + k2

)
(~r · ~E) = 0,

(
∇2 + k2

)
(~r · ~H) = 0.

Magnetic multipole field: ~r · ~E ≡ 0,
Electric multipole field: ~r · ~H ≡ 0.
Whichever isn’t identically zero satisfies Helmholtz.
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Separation of variables

In spherical coordinates,

∇2 =
1
r2

∂

∂r
r2
∂

∂r
+

1
r2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
.

Thus solutions of Helmholtz’s equation are found by
separation of variables, F (r)Y (θ, φ), where the angular
part satisfies

−
[

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂θ2

]
Y`m = `(`+ 1)Y`m.

This you should recognize from Quantum Mechanics as
the equation for the spherical harmonics.
Single-valuedness for corresponding values of θ and φ
require ` ∈ Z.
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Thus the solutions are

TE: ~r · ~H(M)
`m =

`(`+ 1)
k

g`(kr)Y`m(θ, φ), ~r · ~E(M) = 0

TM: ~r · ~E(E)
`m = −Z0

`(`+ 1)
k

f`(kr)Y`m(θ, φ), ~r · ~H(E) = 0.

In fact, let’s steal more from quantum mechanics. Define
the operators ~L = −i~r × ~∇.

L± = Lx ± iLy = e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
, Lz = −i ∂

∂φ
,

and we recall

L±Y`m =
√

(`∓m)(`±m+1)Y`,m±1, LzY`m = mY`m,

L2Y`m = `(`+1)Y`m.
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Dotting ~r into the first Maxwell equation,

ikZ0~r · ~H = ~r ·
(
~∇× ~E

)
=
(
~r × ~∇

)
· ~E = i~L · ~E,

so for the magnetic multipole (TE) field

~L · ~E(M)
`m = kZ0~r · ~H = Z0g`(kr)L2Y`m,

which at least hints at

~E
(M)
`m = Z0g`(kr)~LY`m. (1)

Also, this is consistent with ~r · ~E(M)
`m = 0 as

~r · ~L = −i~r ·
(
~r × ~∇

)
= 0.
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The rest of the fields in a magnetic multipole are

~H
(M)
`m = − i

kZ0

~∇× ~E
(M)
`m .

This magnetic multipole field configuration is also called
transverse electric (TE), as ~E is transverse to the radial
direction.

The same holds for the electric multipole (TM) field:

~H
(E)
`m = f`(kr)~LY`m(θ, φ),

~E
(E)
`m = i

Z0

k
~∇× ~H

(E)
`m =

Z0

k
~∇×

(
~r × ~∇

)
f`(kr)Y`m(θ, φ).

But ~∇×
(
~r × ~∇

)
= ~r∇2 − ~∇

(
1 + r

∂

∂r

)
, so

~E
(E)
`m =

Z0

k

[
~r∇2 − ~∇

(
1 + r

∂

∂r

)]
f`(kr)Y`m(θ, φ).
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the transverse part of the electric field is determined by

~r × E(E)
`m =

Z0

k
~r ×
(
~r∇2 − ~∇

(
1 + r

∂

∂r

))
f`(kr)Y`m(θ, φ)

= −Z0

k

(
~r × ~∇

)(
1 + r

∂

∂r

)
f`(kr)Y`m(θ, φ)

= −iZ0

k

[(
1 + r

∂

∂r

)
f`(kr)

] [
~LY`m(θ, φ)

]
.

Now we need ~r × E(E)
`m = 0 at r = RE and r = RE + h.

Note for ` = 0 we have spherical symmetry, vecE and ~H
are purely radial and angle-independent, so then
~∇ · ~E = 0 =⇒ ~E ≡ c/r2, and we have a solution only for
k = 0 and this is a static coulomb field. For ` 6= 0,
vanishing requires

(
1 + r ∂∂r

)
f`(kr) = 0 at r = RE and

r = RE + h. If, instead, we look for a magnetic multipole
solution, we need g`(kr) = 0 at r = RE and r = RE + h.
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Solution of Radial Equation

As ∇2 =
∂2

∂r2
+

2
r

∂

∂r
− 1
r2
L2, the radial part of an (`,m)

mode satisfies(
∂2

∂r2
+

2
r

∂

∂r
− `(`+ 1)

r2
+ k2

)
g`(kr) = 0.

The same equation holds for f`(kr).

Solutions are spherical Bessel
and Hankel functions, similar
to sin(kr) and cos(kr). Easy
to make combinations which
vanish at two points h apart,
with k of order π/h. For h ∼
100 km, frequency ∼ 10 kHz.
Radio waves are higher fre-
quency, and we could use ge-
ometrical optics to describe

j

n

4

4

j4(x) and n4(x)

what happens.
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We could have resonant magnetic multipole (TE) fields in
the kilohertz range. But there are observed resonances at
8, 14, and 20 Hertz! Why? We need to look at solutions
more closely.

Our equation is(
d2

dr2
+

2
r

d

dr
+ k2 − `(`+ 1)

r2

)
f`(r) = 0,

This can be transformed in several useful ways. Fiddle
the scale of r and the multiply by a power of r,

f`(r) =
u`,α,β(βkr)

(βkr)α

=⇒
(
d2

dx2
+

2
x

d

dx
+

1
β2
− `(`+ 1)

x2

)
u`,α,β(x)
xα

= 0

(
d2

dx2
+

2(1−α)
x

d

dx
+

1
β2

+
α(α−1)− `(`+1)

x2

)
u`,α,β(x) = 0.
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Two useful choices for α and β:
Choice 1: α = 1/2, β = 1(

d2

dx2
+

1
x

d

dx
+ 1− (`+ 1/2)2

x2

)
u`, 1

2
,1(x) = 0,

This is Bessel’s equation with ν = `+ 1
2 , solutions

u = aJ`+ 1
2
(kr) + bN`+ 1

2
(kr), and

f`(r) = a′j`(kr) + b′n`(kr), where j and n are spherical
Bessel and spherical Neumann functions:

j`(x) =
√

π

2x
J`+1/2(x), n`(x) =

√
π

2x
N`+1/2(x)

h
(1,2)
` (x) =

√
π

2x
(
J`+1/2(x)± iN`+1/2(x)

)
.
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Choice 2: α = 1, β = 1/
√
`(`+ 1),(

d2

dx2
+ `(`+ 1)

(
1− 1

x2

))
u` = 0, (2)

As f ∝ u/r, the boundary conditions for an electric
multipole (TM) field at x = βkRE and x = βk(RE + h)
are (

1 + r
d

dr

)
u(βkr)
βkr

= 0 = du/dx, with x = βkr.

To get du/dx to vanish at nearby x’s is now easy. Of
course the average value of d2u/dx2 has to be zero
between the two zeroes of du/dx, but that is assured by
(2) for x = 1 roughly in the center of the interval, so
1 ≈ βkRE , or

k ≈
√
`(`+ 1)
RE

, f =
c

2π

√
`(`+ 1)
RE

= 7.46
√
`(`+ 1)

Hz = 10.5 Hz, 18.3 Hz, 25.8 Hz, . . .. The observed
resonant frequecies are about 20% lower, said to be due to
imperfect conductivity of the ground and ionosphere.
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