Generalized Coordinates Physics 504,
Cartesian coordinates r',i = 1,2, ... D for Euclidean Blectricity
space. Magnetism
Distance by Pythagoras: (ds)? = Z((grl)? Shapiro

i
Unit vectors é;, displacement A7 = Y. Ar'é;
Fields are functions of position, or of 7 or of {r'}. Coords or
Scalar fields ®(7), Vector fields V (7)
- 0P
Vo = P =6
V-V = L
Z a,,t
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Vo =V.-V®d = 2 RELL

VxV = Zeijk%éi, 3D only
ijk
Functions (fields) Physics 501,
A scalar field f(P) = f(F) can also be specified by a Plectricity
function of the ¢’s, f(q) = f(7(q))- Magnetism
What about vector fields? \7(7) has a meaning Shapiro

independent of the coordinates used to describe it, but
components depend on the basis vectors. Should have
basis vectors é; aligned with the direction of ¢*. How to
define?

Generalized
Coordinates

Consider
=12 ¢
&1 = lim 7q' + 64", 6% ¢*) —7(d" . % ¢¥) Z éx
5q1—0 0s dq¢' /a1

and the similarly defined és and é3. In general not good
orthonormal bases, because

Z 94’ 9q 2/\/911922 = g12/\/911922,

which need not be zero.

In fact
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N . . . Shapiro
= 0ij, 80 g~ i8 the inverse matrix to g. .

If Vg - Vg =0 for i # j, g = 0 for i # j, g is diagonal,
s0 g.. is also diagonal. And as (§s)% > 0 for any non-zero
07, g.. is positive definite, so for an orthogonal coordinate
system the diagonal elements are positive, g;; = h?éij,
and g¥ = h7?5;;. Then the unit vectors are

i, OorF R
€; = hL ! Zekaiql = ZBkiek (1)
k k
with the inverse relation

ey = Z hzeza = ZAkzez > Ak > Buér  (2)
i ]

As the éj, are independent, this implies ), Ay; By = Ope
or ABT = 1.
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T i
Other smooth coordinatization ¢*,i = 1,... D Physics 504,

¢'(7) and 7({¢'}) are well defined (in some domain) Spring 2010
mostly 1-—1, so Jacobian det(dq'/0r’) # 0. Mo o
Distance between P = {¢'} and P’ = {¢’ + d¢'} is given Shapiro
by
@ = Y= 3 (X G ) | X G

- —\ &0 g ! Semenptized

' p 7
= > 9;04'6¢’,

ij

where

- ark ork
A zk: qu 8(]7 .
gij is a real symmetric matrix called the metric tensor.
In general a nontrivial function of the position, g;;(¢).

To repeat:
(05)% = gij0q'5q’.
ij
Another problem: ¢ is not normal to the surface ¢* = Physics 504,
constant. S]glrelx:.gri?:;‘:.‘lyo
Magmetism
What to do? Two approaches: Shapiro
» Give up on orthonormal basis vectors. Define
0P
differential forms, such as d® = Z —kd:tk. The
- ox
coefficients of dz* transform as covariant vectors. Eoorainaien
Contravariant vectors may be considered coefficients
of directional derivatives 0/0¢". This is the favored
approach for working in curved spaces, differential
geometry and general relativity.
» Restrict ourselves to orthogonal coordinate systems
— surface ¢' = constant intersects ¢’ = constant at
right angles. Then V¢' - V¢/ = 0.
L oq oq
In general define :=Vq V¢ = —.
g g q' Vg Xk: R
Note that g% is not the same as g;;.
The set {é,} and the set {¢;} are each orthonormal, Sing 2010
and é; = >, Ayi€;, so A is orthogonal, and .. B = A. El“?rf;“""
Can also check as Magnetism
Shapiro
D Ay = hihy Y (9q'/0r*)(0q’ Jor*) = hihyg? = 6.
k k
Thus A can be written two ways, Genoralized
0 ark
A = Iy —q =S
“ork gt

Note that Aj; is a function of position, not a constant. In
Euclidean space we say that é, is the same vector
regardless of which point 7 the vector is at'. But then

€ = ZAji(P)éj is not the same vector at different

J
points P.

'That is, Euclidean space comes with a prescribed parallel
transport, telling how to move a vector without changing it.
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So for a vector field “and

=D Vil@)e; = Yo VilRe = DoV Aué,
i i ik
so Vi(q) = ZV (9))Aix(a)-
Also Vi(F) = ZAm(mZ:(q(ﬂ)-

Vector Fields

Let’s summarize some of our previous relations:
e = E A, é = E Aji(P)éj
i J

aq' _h,lark
ok i ¢’
i = hidy, ¥ =h%6;

Api = by
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Velocity of a particle

<y
Il

Note it is h]-dqj which has the right dimensions for an :
infinitesimal length, while dg’ by itself might not. paraiad °F®

Example, spherical coordinates.

r spherical shells
Surfaces of constant 0 cone, vertex at 0
0] plane containing z

with the shells centered at the origin. These intersect at
right angles, so they are orthogonal coords.
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Euclidean parallel transport: ge; =0
‘s

40 . ot
7t = 5 S G (74
ark 94,
_ -1 or 4i
= b Z g7 orF €p

ZAk]a ZzA

Derivatives of
Vectos

Gradient of a scalar field Physics 504,
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VI o= D gmte=2_\ g | Aentn)
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Both f() and f(q) represent the same function f (P) on
space, so we often carelessly leave out the twiddle.
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By looking at distances from varying one coordinate, Shapiro

comparing to (ds)? = h2(dr)? + h3(d9)? + hi(d¢)2,

we see that

hr =1, hg=r, hg=rsind.

Thus
T = 7é, + r0ég + rsin g, pareiai 0 ®
and
2 =72 41202 + 17 sin” 9%
Differential Forms Physics S04,
Electricity
. . i . and
A general 1-form over a space coordinatized by ¢ is Magnetism
. Shapiro
w= ZA,-(P)dqz,
i
and is associated with a vector. But if we are using
orthogonal curvilinear coordinates, it is more natural to
express the coefficients as multiplying the “normalized”
I-forms w; := h;dq’, with w = >, A; dq = Viw,.
Then w is associated with the vector V = 3, Vié;.
Note that if Difforontial
of , i 1 9f
w=df = (ria—qidq = zi:hi a—qzwz

the associated vector is V = Z h; !

(9f~ -
o .



2-forms

General 2-form: w® =

ZB”LW A UJJ, with B7] = 7B]z

In three dimensions, this can be associated with a vector
_ P |
B = ZB,(’,L with Bi = 5 Zfijk'Bjkv

ik

1
IV =w® and w® = dw®| then

2ZBZ]wZ/\w7 =d

e

1]

_ ZB(V}Li)dJ/\dI

ij

Zh 'hy 18

1
Thus - Byj = 5h, o (

V - B and 3-forms

Finally, let’s consider a vector B= > B;é; and its

associated 2-form

a(V;h;)
¢’

)

(o)

B;

— W \wi,

A(Vihi)
Oq’

i

)

ik = Z €ijk Bi.

. 1 ~ 1 ~ N .
w(z) = 5 Z E,;]'kBiu.)]‘ Nwg = 5 Z eijkBihjhkqu A qu.

The exterior derivative is a three-form

dw®

= e

1 dB;h;h
= §Zﬁijkéfljk57q]kd /\dq /\dq

2 o

h] }Lghg

ijkt

ijkt
1

Jdqr

Jgi

h,‘

9 <h1h2h3 Bl> w1 A w2 A ws.

B; OBihihi ot n dqi A dg*

So we see that if w(® = ];, dw® = f, with

h1h2h3

1

)
Z Jq;

I

<h1h2h3 ~

B).

i

In cartesian coordinates this just reduces to V - B, but
this association is coordinate-independent, so we see that
in a general curvilinear coordinate system,

V.B=

1 1s]
hihahs Z oq’ (

hi

h] hQ}Lg B)

Finally, let’s examine the Laplacian on a scalar:

> 55

f

Vo=V .-Vb=—"—
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The associated vector has coefficients

. 1
B = = i
k 2%:”"}”}@-

1

o -
(350~

1 0 /-
- izjeijkma—qi (thj).

For cartesian coordinates h; = 1, and we recognize this as

the curl of 17, so dwV) =

coordinate-independent statement. Thus we have for any

V x V, which is a

orthogonal curvilinear coordinates

d
VXZV@, ZF,]khh aq (hl

ijk

B

o -~
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(4)

A 3-form in three dimensions is associated with a scalar

function f(P) by

. : 1
W = fdrt A dr? A dr® = of > €apedr® Adr® A dr*

= fz abcaqﬁaq
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orb ¢
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where det A = 1 because A is orthogonal, but also we

assume the é; form a right handed coordiate system.
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For the record, even for generalized coordinates that are
not orthogonal, we can write

10
,\/g%:

oq'

where g :=detg..

9
QZ]\/gaquw
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Cylindrical Polar Coordinates

Although we have developed this to deal with esoteric
orthogonal coordinate systems, such as those for your
homework, let us here work out the familiar cylindrical
polar and spherical coordinate systems.

Cylindrical Polar: r, ¢, z,

(65)2 =

() +72(09)* + (62)°,

80 hy = h, = 1,hy = 7. Then

Vf =

or, o5, or,
o T T 9.

Polar, continued further

1

1

ror

1O () 2 (122)
rlor \' or dp \r 0o

0 P
+$ (1"&)
0 <r0£) 1 d?® d2
or r2 dg?

Spherical Coordinates, continued
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Polar, continued
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r \ 0 9z ) 0z ar
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Spherical Coordinates

Spherical Coordinates:
r radius, 6 polar angle, ¢

azimuth

(85)% = (6r)2+12(60)2+12 sin® 0(3¢)2,

/=

so h, =1, hy

<L
X
<t

Spherical,

r

1

=7, hy = rsind.
0j~ 18]”~ 1 (9]"~
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continued further
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