Generalized Coordinates

Cartesian coordinates $r^i, i=1,2,\ldots D$ for Euclidean space.

Distance by Pythagoras: $(\delta s)^2 = \sum (\delta r^i)^2$.

Unit vectors \hat{e}_i , displacement $\Delta \vec{r} = \sum_i \Delta r^i \hat{e}_i$ Fields are functions of position, or of \vec{r} or of $\{r^i\}$. Scalar fields $\Phi(\vec{r})$, Vector fields $V(\vec{r})$

$$\begin{split} \vec{\nabla}\Phi &=& \sum_i \frac{\partial \Phi}{\partial r^i} \hat{e}_i, \\ \vec{\nabla} \cdot \vec{V} &=& \sum_i \frac{\partial V_i}{\partial r^i}, \\ \nabla^2 \Phi &=& \vec{\nabla} \cdot \vec{\nabla}\Phi &=& \sum_i \frac{\partial^2 \Phi}{\partial r^{i2}}, \\ \vec{\nabla} \times \vec{V} &=& \sum_{ijk} \epsilon_{ijk} \frac{\partial V_k}{\partial r^j} \hat{e}_i, \quad \quad \text{3D only} \end{split}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Generalized Coordinates

Gradient
Velocity of a
particle
Derivatives of
Vectors
Differential
Forms

Other smooth coordinatization $q^i, i = 1, \dots D$ $q^{i}(\vec{r})$ and $\vec{r}(\{q^{i}\})$ are well defined (in some domain) mostly 1—1, so Jacobian $\det(\partial q^i/\partial r^j) \neq 0$.

Distance between $P \rightleftharpoons \{q^i\}$ and $P' \rightleftharpoons \{q^i + \delta q^i\}$ is given

$$(\delta s)^{2} = \sum_{k} (\delta r^{k})^{2} = \sum_{k} \left(\sum_{i} \frac{\partial r^{k}}{\partial q^{i}} \delta q^{i} \right) \left(\sum_{j} \frac{\partial r^{k}}{\partial q^{j}} \delta q^{j} \right)$$
$$= \sum_{i,j} g_{ij} \delta q^{i} \delta q^{j},$$

where

constant.

What to do? Two approaches:

$$g_{ij} = \sum_{k} \frac{\partial r^k}{\partial q^i} \frac{\partial r^k}{\partial q^j}.$$

 g_{ij} is a real symmetric matrix called the *metric tensor*. In general a nontrivial function of the position, $g_{ij}(q)$. To repeat:

▶ Give up on orthonormal basis vectors. Define

differential forms, such as $d\Phi = \sum_k \frac{\partial \Phi}{\partial x^k} dx^k$. The

coefficients of dx^k transform as covariant vectors.

Contravariant vectors may be considered coefficients

of directional derivatives $\partial/\partial q^k$. This is the favored

approach for working in curved spaces, differential

▶ Restrict ourselves to orthogonal coordinate systems

surface $q^i = \text{constant intersects } q^j = \text{constant at}$

$$(\delta s)^2 = \sum_{ij} g_{ij} \delta q^i \delta q^j.$$

Functions (fields)

A scalar field $f(P) \rightleftharpoons f(\vec{r})$ can also be specified by a function of the q's, $\tilde{f}(q) = f(\vec{r}(q))$. What about vector fields? $\vec{V}(\vec{r})$ has a meaning

independent of the coordinates used to describe it, but components depend on the basis vectors. Should have basis vectors \tilde{e}_i aligned with the direction of q^i . How to define?

Consider

$$\tilde{e}_1 = \lim_{\delta q^1 \rightarrow 0} \frac{\vec{r}(q^1 + \delta q^1, q^2, q^3) - \vec{r}(q^1, q^2, q^3)}{\delta s} = \sum_k \frac{\partial r^k}{\partial q^1} \frac{\hat{e}_k}{\sqrt{g_{11}}}$$

and the similarly defined \tilde{e}_2 and \tilde{e}_3 . In general not good orthonormal bases, because

$$\tilde{e}_1\cdot\tilde{e}_2=\sum_k\frac{\partial r^k}{\partial q^1}\frac{\partial r^k}{\partial q^2}/\sqrt{g_{11}g_{22}}=g_{12}/\sqrt{g_{11}g_{22}},$$

which need not be zero.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Gradient
Velocity of a
particle
Derivatives of
Vectors
Differential
Forms
2-forms

hysics 504

and Magnetism

Shapiro

Generalized Coordinates Cartesian coords for

Velocity of a

Derivatives of Vectors

Vectors Differential Forms 2-forms 3-forms

In general define

right angles. Then
$$\vec{\nabla}q^i \cdot \vec{\nabla}q^j = 0$$
.

eneral define $g^{ij} := \vec{\nabla}q^i \cdot \vec{\nabla}q^j = \sum_k \frac{\partial q^i}{\partial r^k} \frac{\partial q^j}{\partial r^k}$.

Note that g^{ij} is not the same as g_{ij} .

geometry and general relativity.

Another problem: \tilde{e}_k is not normal to the surface $q^k =$

Shapiro

Physics 504, Spring 2010 Electricity and Magnetism

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

Generalized Coordinates

Velocity of a particle Derivatives of Vectors

Generalized Coordinates

Derivatives Gradient Velocity of a particle Derivatives o Vectors

$$\sum_{\ell} g^{i\ell} g_{\ell j} = \sum_{\ell} \sum_{k} \frac{\partial q^{i}}{\partial r^{k}} \frac{\partial q^{\ell}}{\partial r^{k}} \sum_{m} \frac{\partial r^{m}}{\partial q^{\ell}} \frac{\partial r^{m}}{\partial q^{j}} = \sum_{km} \frac{\partial q^{i}}{\partial r^{k}} \delta_{km} \frac{\partial r^{m}}{\partial q^{j}}$$

 $=\delta_{ij}$, so $g^{..}$ is the inverse matrix to $q_{..}$

If $\vec{\nabla}q^i\cdot\vec{\nabla}q^j=0$ for $i\neq j,\ g^{ij}=0$ for $i\neq j,\ g^.$ is diagonal, so $g_.$ is also diagonal. And as $(\delta s)^2>0$ for any non-zero $\delta \vec{r}$, $g_{..}$ is positive definite, so for an orthogonal coordinate system the diagonal elements are positive, $g_{ij} = h_i^2 \delta_{ij}$, and $g^{ij} = h_i^{-2} \delta_{ij}$. Then the unit vectors are

$$\tilde{e}_i = h_i^{-1} \sum_k \hat{e}_k \frac{\partial r^k}{\partial q^i} =: \sum_k B_{ki} \hat{e}_k \tag{1}$$

with the inverse relation

$$\hat{e}_k = \sum_i h_i \tilde{e}_i \frac{\partial q^i}{\partial r^k} =: \sum_i A_{ki} \tilde{e}_i = \sum_i A_{ki} \sum_{\ell} B_{\ell i} \hat{e}_{\ell}.$$
 (2)

As the \hat{e}_k are independent, this implies $\sum_i A_{ki} B_{\ell i} = \delta_{k\ell}$

The set $\{\hat{e}_k\}$ and the set $\{\tilde{e}_i\}$ are each orthonormal, and $\hat{e}_k = \sum_i A_{ki} \tilde{e}_i$, so A is orthogonal, and $\therefore B = A$. Can also check as

$$\sum_{k} A_{ki} A_{kj} = h_i h_j \sum_{k} (\partial q^i / \partial r^k) (\partial q^j / \partial r^k) = h_i h_j g^{ij} = \delta_{ij}.$$

Thus A can be written two ways,

$$A_{ki} = h_i \frac{\partial q^i}{\partial r^k} = h_i^{-1} \frac{\partial r^k}{\partial q^i}.$$

Note that A_{jk} is a function of position, not a constant. In Euclidean space we say that \hat{e}_x is the same vector regardless of which point \vec{r} the vector is at¹. But then $\tilde{e}_i = \sum A_{ji}(P)\hat{e}_j$ is not the same vector at different points $\stackrel{j}{P}$.

That is, Euclidean space comes with a prescribed parallel transport, telling how to move a vector without changing it.

Magnetism

Shapiro

Generalized Coordinates

Velocity of a particle Derivatives o Vectors

Vector Fields

So for a vector field

$$\vec{V}(P) = \sum_{j} \tilde{V}_{j}(q)\tilde{e}_{j} = \sum_{i} V_{i}(\vec{r})\hat{e}_{i} = \sum_{ik} V_{i}(\vec{r})A_{ik}\tilde{e}_{k},$$

so
$$\tilde{V}_k(q) = \sum_i V_i(\vec{r}(q)) A_{ik}(q).$$

Also $V_k(\vec{r}) = \sum_i A_{ki}(\vec{r}) \tilde{V}_i(q(\vec{r})).$

Let's summarize some of our previous relations:

$$\begin{split} \hat{e}_k &= \sum_i A_{ki} \tilde{e}_i, \qquad \tilde{e}_i = \sum_j A_{ji}(P) \hat{e}_j \\ A_{ki} &= h_i \frac{\partial q^i}{\partial r^k} = h_i^{-1} \frac{\partial r^k}{\partial q^i} \\ g_{ij} &= h_i^2 \delta_{ij}, \qquad g^{ij} = h_i^{-2} \delta_{ij} \end{split}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Gradient
Velocity of a
particle
Derivatives of
Vectors
Differential
Forms

Gradient of a scalar field

$$\vec{\nabla}f = \sum_{k} \frac{\partial f}{\partial r^{k}} \hat{e}_{k} = \sum_{k\ell m} \left(\frac{\partial \tilde{f}}{\partial q^{\ell}} \frac{\partial q^{\ell}}{\partial r^{k}} \right) (A_{km} \tilde{e}_{m})$$

$$= \sum_{k\ell m} \left(\frac{\partial \tilde{f}}{\partial q^{\ell}} \frac{\partial q^{\ell}}{\partial r^{k}} \right) \left(h_{m} \tilde{e}_{m} \frac{\partial q^{m}}{\partial r^{k}} \right) = \sum_{\ell m} \frac{\partial \tilde{f}}{\partial q^{\ell}} h_{m} \tilde{e}_{m} g^{m\ell}$$

$$= \sum_{\ell m} \frac{\partial \tilde{f}}{\partial q^{\ell}} h_{m} \tilde{e}_{m} h_{m}^{-2} \delta_{m\ell} = \sum_{m} h_{m}^{-1} \frac{\partial \tilde{f}}{\partial q^{m}} \tilde{e}_{m},$$

$$\vec{\nabla}f = \sum_{m} h_{m}^{-1} \frac{\partial \tilde{f}}{\partial q^{m}} \tilde{e}_{m}. \tag{3}$$

Both $f(\vec{r})$ and $\tilde{f}(q)$ represent the same function f(P) on space, so we often carelessly leave out the twiddle.

Velocity of a particle

$$\vec{v} = \sum_{k} \frac{dr^{k}}{dt} \hat{e}_{k} = \sum_{k} \left(\sum_{i} \frac{\partial r^{k}}{\partial q^{i}} \frac{dq^{i}}{dt} \right) \left(\sum_{j} h_{j} \frac{\partial q^{j}}{\partial r^{k}} \tilde{e}_{j} \right)$$
$$= \sum_{ij} \frac{dq^{i}}{dt} h_{j} \delta_{ij} \tilde{e}_{j} = \sum_{j} h_{j} \frac{dq^{j}}{dt} \tilde{e}_{j}.$$

Note it is $h_j dq^j$ which has the right dimensions for an infinitesimal length, while dq^{j} by itself might not.

Example, spherical coordinates.

spherical shells Surfaces of constant $\{\theta\}$ cone, vertex at 0 plane containing z

with the shells centered at the origin. These intersect at right angles, so they are orthogonal coords.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Generalized Coordinates Cartesian coords for

Derivatives

Gradient Velocity of a particle

By looking at distances from varying one coordinate, comparing to $(ds)^2 = h_r^2(dr)^2 + h_\theta^2(d\theta)^2 + h_\phi^2(d\phi)^2$, we see that

$$h_r = 1$$
, $h_\theta = r$, $h_\phi = r \sin \theta$.

Thus

$$\vec{v} = \dot{r}\tilde{e}_r + r\dot{\theta}\tilde{e}_\theta + r\sin\theta\dot{\phi}\tilde{e}_\phi$$

and

$$v^2 = \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2.$$

Physics 504, Spring 2010 Electricity and Magnetism

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

Shapiro

Generalized Coordinates Cartesian coords for

Derivatives

4 m > 4 m >

Differential Forms

A general 1-form over a space coordinatized by q^i is

$$\omega = \sum_{i} A_i(P) dq^i,$$

and is associated with a vector. But if we are using orthogonal curvilinear coordinates, it is more natural to express the coefficients as multiplying the "normalized" 1-forms $\omega_i := h_i dq^i$, with $\omega = \sum_i A_i dq^i = \tilde{V}_i \omega_i$. Then ω is associated with the vector $\vec{V} = \sum_{i} \tilde{V}_{i} \tilde{e}_{i}$

$$\omega = df = \sigma_i \frac{\partial f}{\partial q^i} dq^i = \sum_i h_i^{-1} \frac{\partial f}{\partial q^i} \omega_i,$$

the associated vector is $\vec{V} = \sum_{i} h_i^{-1} \frac{\partial f}{\partial q^i} \tilde{e}_i = \vec{\nabla} f$.

Physics 504, Spring 2010 Electricity Magnetism

Shapiro

Differential Forms

4 m > 4 m >

Derivatives of Vectors

Euclidean parallel transport: $\frac{\partial \hat{e}_i}{\partial x^i} = 0$

$$\begin{split} h_j^{-1} \frac{\partial}{\partial q^j} \tilde{e}_i &= h_j^{-1} \sum_{k\ell} \frac{\partial r^k}{\partial q^j} \frac{\partial}{\partial r^k} \left(h_i^{-1} \hat{e}_\ell \frac{\partial r^\ell}{\partial q^i} \right) \\ &= h_j^{-1} \sum_{k\ell} \frac{\partial r^k}{\partial q^j} \frac{\partial A_{\ell i}}{\partial r^k} \hat{e}_\ell \\ &= \sum_{k\ell} A_{kj} \frac{\partial A_{\ell i}}{\partial r^k} \hat{e}_\ell. \end{split}$$

Physics 504, Spring 2010 Electricity Magnetism

Shapiro

Derivatives

2-forms

General 2-form: $\omega^{(2)} = \frac{1}{2} \sum_{i} B_{ij} \omega_i \wedge \omega_j$, with $B_{ij} = -B_{ji}$.

In three dimensions, this can be associated with a vector $\vec{B} = \sum_{i} \tilde{B}_{i}\tilde{e}_{i}$ with $\tilde{B}_{i} = \frac{1}{2}\sum_{jk}\epsilon_{ijk}B_{jk}$, $B_{jk} = \sum_{i}\epsilon_{ijk}\tilde{B}_{i}$. If $\vec{V} \rightleftharpoons \omega^{(1)}$ and $\omega^{(2)} = d\omega^{(1)}$, then

$$\begin{split} \omega^{(2)} &= \frac{1}{2} \sum_{ij} B_{ij} \omega_i \wedge \omega_j = d \left(\sum_i \tilde{V}_i h_i dq^i \right) \\ &= \sum_{ij} \frac{\partial (\tilde{V}_i h_i)}{\partial q^j} dq^j \wedge dq^i \\ &= \sum_{ij} h_i^{-1} h_j^{-1} \frac{\partial (\tilde{V}_i h_i)}{\partial q^j} \omega_j \wedge \omega_i, \end{split}$$

Thus
$$\frac{1}{2}B_{ij} = \frac{1}{2}h_i^{-1}h_j^{-1}\left(\frac{\partial(\tilde{V}_jh_j)}{\partial q^i} - \frac{\partial(\tilde{V}_ih_i)}{\partial q^j}\right).$$

Shapiro

Gradient
/elocity of a
article
/erivatives of
/ectors
/orms

The associated vector has coefficients

$$\begin{split} \tilde{B}_k &=& \frac{1}{2} \sum_{ij} \epsilon_{ijk} \frac{1}{h_i h_j} \left(\frac{\partial}{\partial q^i} \tilde{V}_j h_j - \frac{\partial}{\partial q^j} \tilde{V}_i h_i \right) \\ &=& \sum_{ij} \epsilon_{ijk} \frac{1}{h_i h_j} \frac{\partial}{\partial q^i} \left(\tilde{V}_j h_j \right). \end{split}$$

For cartesian coordinates $h_i = 1$, and we recognize this as the curl of \vec{V} , so $d\omega^{(1)} \rightleftharpoons \vec{\nabla} \times \vec{V}$, which is a coordinate-independent statement. Thus we have for any orthogonal curvilinear coordinates

$$\vec{\nabla} \times \sum_{i} \tilde{V}_{i} \tilde{e}_{i} = \sum_{ijk} \epsilon_{ijk} \frac{1}{h_{i} h_{j}} \frac{\partial}{\partial q^{i}} \left(h_{j} \tilde{V}_{j} \right) \tilde{e}_{k}. \tag{4}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

$\vec{\nabla} \cdot \vec{B}$ and 3-forms

Finally, let's consider a vector $\vec{B} = \sum_{i} \tilde{B}_{i} \tilde{e}_{i}$ and its associated 2-form

$$\omega^{(2)} = \frac{1}{2} \sum_{i} \epsilon_{ijk} \tilde{B}_{i} \omega_{j} \wedge \omega_{k} = \frac{1}{2} \sum_{i} \epsilon_{ijk} \tilde{B}_{i} h_{j} h_{k} dq^{j} \wedge dq^{k}.$$

The exterior derivative is a three-form

$$d\omega^{(2)} = \frac{1}{2} \sum_{ijk\ell} \epsilon_{ijk} \frac{\partial \tilde{B}_i h_j h_k}{\partial q_\ell} dq^\ell \wedge dq^j \wedge dq^k$$

$$= \frac{1}{2} \sum_{ijk\ell} \epsilon_{ijk\ell} \epsilon_{\ell jk} \frac{\partial \tilde{B}_i h_j h_k}{\partial q_\ell} dq^1 \wedge dq^2 \wedge dq^3$$

$$= \frac{1}{h_1 h_2 h_3} \sum_i \frac{\partial}{\partial q_i} \left(\frac{h_1 h_2 h_3}{h_i} \tilde{B}_i \right) \omega_1 \wedge \omega_2 \wedge \omega_3.$$

4 m > 4 m >

Physics 504 Spring 2010 Electricity

Shapiro

Shapiro

A 3-form in three dimensions is associated with a scalar function f(P) by

$$\begin{split} \omega^{(3)} &= f dr^1 \wedge dr^2 \wedge dr^3 = \frac{1}{6} f \sum_{abc} \epsilon_{abc} dr^a \wedge dr^b \wedge dr^c \\ &= \frac{1}{6} f \sum_{abcijk} \epsilon_{abc} \frac{\partial r^a}{\partial q^i} \frac{\partial r^b}{\partial q^j} \frac{\partial r^c}{\partial q^k} dq^i \wedge dq^j \wedge dq^k \\ &= \frac{1}{6} f \sum_{abcijk} \epsilon_{abc} \left(h_i^{-1} \frac{\partial r^a}{\partial q^i} \right) \left(h_j^{-1} \frac{\partial r^b}{\partial q^j} \right) \left(h_k^{-1} \frac{\partial r^c}{\partial q^k} \right) \\ &= \frac{1}{6} f \det A \sum_{ijk} \epsilon_{ijk} \omega_i \wedge \omega_j \wedge \omega_k \\ &= f \det A \omega_1 \wedge \omega_2 \wedge \omega_3 \\ &= f \omega_1 \wedge \omega_2 \wedge \omega_3, \end{split}$$

where $\det A = 1$ because A is orthogonal, but also we

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

assume the \tilde{e}_i form a right handed coordiate system.

So we see that if $\omega^{(2)} \rightleftharpoons \vec{B}$, $d\omega^{(2)} \rightleftharpoons f$, with

$$f = \frac{1}{h_1 h_2 h_3} \sum_{\cdot} \frac{\partial}{\partial q_i} \left(\frac{h_1 h_2 h_3}{h_i} \tilde{B}_i \right).$$

In cartesian coordinates this just reduces to $\vec{\nabla} \cdot \vec{B}$, but this association is coordinate-independent, so we see that in a general curvilinear coordinate system,

$$\vec{\nabla} \cdot \vec{B} = \frac{1}{h_1 h_2 h_3} \sum_i \frac{\partial}{\partial q^i} \left(\frac{h_1 h_2 h_3}{h_i} \tilde{B}_i \right).$$

Finally, let's examine the Laplacian on a scalar:

$$\begin{split} f &=& \nabla^2 \Phi = \vec{\nabla} \cdot \vec{\nabla} \Phi = \frac{1}{h_1 h_2 h_3} \sum_i \frac{\partial}{\partial q^i} \left(\frac{h_1 h_2 h_3}{h_i} h_i^{-1} \frac{\partial \Phi}{\partial q^i} \right) \\ &=& \frac{1}{h_1 h_2 h_3} \sum_i \frac{\partial}{\partial q^i} \left(\frac{h_1 h_2 h_3}{h_i^2} \frac{\partial \Phi}{\partial q^i} \right) \end{split}$$

Summary

$$\begin{split} \vec{v} &= \sum_{j} h_{j} \frac{dq^{j}}{dt} \tilde{e}_{j}, \qquad \vec{\nabla} f = \sum_{m} h_{m}^{-1} \frac{\partial \tilde{f}}{\partial q^{m}} \tilde{e}_{m}, \\ \vec{\nabla} \times \left(\sum_{i} \tilde{V}_{i} \tilde{e}_{i} \right) &= \sum_{ijk} \epsilon_{ijk} \frac{1}{h_{i} h_{j}} \frac{\partial}{\partial q^{i}} \left(h_{j} \tilde{V}_{j} \right) \tilde{e}_{k}, \\ \vec{\nabla} \cdot \vec{B} &= \frac{1}{h_{1} h_{2} h_{3}} \sum_{i} \frac{\partial}{\partial q^{i}} \left(\frac{h_{1} h_{2} h_{3}}{h_{i}} \tilde{B}_{i} \right), \\ \nabla^{2} \Phi &= \frac{1}{h_{1} h_{2} h_{3}} \sum_{i} \frac{\partial}{\partial q^{i}} \left(\frac{h_{1} h_{2} h_{3}}{h_{i}^{2}} \frac{\partial \Phi}{\partial q^{i}} \right) \end{split}$$

For the record, even for generalized coordinates that are not orthogonal, we can write

$$\nabla^2 = \frac{1}{\sqrt{g}} \sum_{i,i} \frac{\partial}{\partial q^i} g^{ij} \sqrt{g} \frac{\partial}{\partial q^j},$$

where $g := \det g_{..}$.

Shapiro

Cylindrical Polar Coordinates

Although we have developed this to deal with esoteric orthogonal coordinate systems, such as those for your homework, let us here work out the familiar cylindrical polar and spherical coordinate systems.

Cylindrical Polar: r, ϕ, z ,

$$(\delta s)^2 = (\delta r)^2 + r^2 (\delta \phi)^2 + (\delta z)^2,$$

so
$$h_r = h_z = 1, h_\phi = r$$
. Then

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Gradient
Velocity of a
particle
Derivatives of
Vectors
Differential
Forms

Polar, continued

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

> 4B > 4E > 4E > E +990

$$\vec{\nabla}f = \frac{\partial f}{\partial r}\tilde{e}_r + \frac{1}{r}\frac{\partial f}{\partial \phi}\tilde{e}_\phi + \frac{\partial f}{\partial z}\tilde{e}_z,$$

4 D > 4 D > 4 E > 4 E > E 9 Q O

Polar, continued further

$$\begin{split} \nabla^2 \Phi &= \frac{1}{r} \Big[\frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \phi} \right) \\ &+ \frac{\partial}{\partial z} \left(r \frac{\partial \Phi}{\partial z} \right) \Big] \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{d^2 \Phi}{d\phi^2} + \frac{d^2 \Phi}{dz^2} \end{split}$$

4 m + 4 m + 4 m + 4 m + 2 m + 9 q @

Physics 504, Spring 2010 Electricity

Shapiro

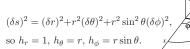
Generalized Coordinates Cartesian coords for

Derivatives

Spherical Coordinates

Spherical Coordinates:

r radius, θ polar angle, ϕ azimuth



$$\begin{split} \vec{\nabla}f &= \frac{\partial f}{\partial r} \tilde{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \tilde{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \tilde{e}_\phi \\ \vec{\nabla} \times \vec{V} &= \frac{1}{r^2 \sin \theta} \left(\frac{\partial}{\partial \theta} r \sin \theta V_\phi - \frac{\partial}{\partial \phi} r V_\theta \right) \tilde{e}_r \\ &+ \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \phi} V_r - \frac{\partial}{\partial r} r \sin \theta V_\phi \right) \tilde{e}_\theta \\ &+ \frac{1}{r} \left(\frac{\partial}{\partial r} r V_\theta - \frac{\partial}{\partial \theta} V_r \right) \tilde{e}_\phi \end{split}$$

 $\vec{\nabla} \times \left(\sum_{i} \tilde{V}_{i} \tilde{e}_{i} \right) = \frac{1}{r} \left(\frac{\partial V_{z}}{\partial \phi} - \frac{\partial r V_{\phi}}{\partial z} \right) \tilde{e}_{r} + \left(\frac{\partial V_{r}}{\partial z} - \frac{\partial V_{z}}{\partial r} \right) \tilde{e}_{\phi}$

 $\vec{\nabla} \cdot \left(\sum_{i} \tilde{V}_{i} \tilde{e}_{i} \right) = \frac{1}{r} \left(\frac{\partial (rV_{r})}{\partial r} + \frac{\partial V_{\phi}}{\partial \phi} + \frac{\partial (rV_{z})}{\partial z} \right)$

$$\begin{split} & + \frac{1}{r} \left(\frac{\partial r V_{\phi}}{\partial r} - \frac{\partial V_{z}}{\partial \phi} \right) \tilde{e}_{z} \\ = & \left(\frac{1}{r} \frac{\partial V_{z}}{\partial \phi} - \frac{\partial V_{\phi}}{\partial z} \right) \tilde{e}_{r} + \left(\frac{\partial V_{r}}{\partial z} - \frac{\partial V_{z}}{\partial r} \right) \tilde{e}_{\phi} \\ & + \left(\frac{\partial V_{\phi}}{\partial r} - \frac{1}{r} \frac{\partial V_{z}}{\partial \phi} + \frac{1}{r} V_{\phi} \right) \tilde{e}_{z} \end{split}$$

Shapiro

ロ > (間 > (目 > (目 >) 至) 9 (0)

Spherical Coordinates, continued

$$\begin{split} \vec{\nabla} \times \vec{V} &= \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} \left(\sin \theta V_{\phi} \right) - \frac{\partial}{\partial \phi} V_{\theta} \right] \tilde{e}_{r} \\ &+ \left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} V_{r} - \frac{1}{r} \frac{\partial}{\partial r} \left(r V_{\phi} \right) \right] \tilde{e}_{\theta} \\ &+ \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r V_{\theta} \right) - \frac{\partial}{\partial \theta} V_{r} \right] \tilde{e}_{\phi}, \\ \vec{\nabla} \cdot \vec{B} &= \frac{1}{r^{2} \sin \theta} \left[\frac{\partial}{\partial r} \left(r^{2} \sin \theta \tilde{B}_{r} \right) + \frac{\partial}{\partial \theta} \left(r \sin \theta \tilde{B}_{\theta} \right) \right. \\ &+ \frac{\partial}{\partial \phi} \left(r \tilde{B}_{\phi} \right) \right] \\ &= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \tilde{B}_{r} \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \tilde{B}_{\theta} \right) \\ &+ \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tilde{B}_{\phi} \end{split}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Spherical, continued further

$$\nabla^{2}\Phi = \frac{1}{r^{2}\sin\theta} \left(\frac{\partial}{\partial r} r^{2}\sin\theta \frac{\partial\Phi}{\partial r} + \frac{\partial}{\partial\theta}\sin\theta \frac{\partial\Phi}{\partial\theta} + \frac{\partial}{\partial\theta}\sin\theta \frac{\partial\Phi}{\partial\theta} \right)$$
$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial\Phi}{\partial r} \right) + \frac{1}{r^{2}\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Phi}{\partial\theta} \right)$$
$$+ \frac{1}{r^{2}\sin^{2}\theta} \frac{\partial^{2}\Phi}{\partial\phi^{2}}.$$

Physics 504, Spring 2010 Electricity Magnetism

Shapiro