Generalized Coordinates
Cartesian coordinates r*,i = 1,2,... D for Euclidean
space.
Distance by Pythagoras: (6s)% = Z(éri)Q.
i
Unit vectors é;, displacement A7 =), Arie;
Fields are functions of position, or of 7 or of {ri}.
Scalar fields ®(7), Vector fields V' (7)
> 0P
or? g

-y
Vo=V Vo = Zarﬂ’

-~ o oV;
VxV = E Eijkairjéi, 3D only
ijk
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Other smooth coordinatization ¢*,i =1,...D
¢'(7) and 7({q'}) are well defined (in some domain)
mostly 1-—1, so Jacobian det(dq’/0r7) # 0.

Distance between P = {¢'} and P’ = {¢' + d¢'} is given
by

ork . ork
2 kN2 _ 7
G = Yrt) _Z<i 8qi5q) o

K K
= ) 90467,
ij

where

ork ork
9ij = Z PP
p 0q" 0qJ
gij is a real symmetric matrix called the metric tensor.

In general a nontrivial function of the position, g;;(q).
To repeat:

]
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Functions (fields) Physics 504,

Spring 2010

A scalar field f(P) = f() can also be specified by a e
funCtion Of the q’S7 f(q) = f(’)?(q)) Magnetism
What about vector fields? V (7) has a meaning Shapiro

independent of the coordinates used to describe it, but
components depend on the basis vectors. Should have
basis vectors é; aligned with the direction of ¢*. How to e
deﬁne? Coordinates

Consider

7(¢' + 04", 4% ¢*) — 7(q'. ¢*. ¢*)

) =
= lim
5ql—0 0s Z oq* /911

and the similarly defined é> and é3. In general not good
orthonormal bases, because

_ ork ork
€162 = Z 94’ 0q 2/\/911922 912/+/911922,

which need not be zero.



Another problem: € is not normal to the surface qk’ = Physicsl504)

Spring 2010
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and
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What to do? Two approaches:

Shapiro
» Give up on orthonormal basis vectors. Define
) ) od
differential forms, such as d® = E dek. The
T
k G lized
. ) TR
coefficients of dx* transform as covariant vectors. Coordinates

Contravariant vectors may be considered coefficients
of directional derivatives 9/9¢*. This is the favored
approach for working in curved spaces, differential

geometry and general relativity.

» Restrict ourselves to orthogonal coordinate systems
— surface qi = constant intersects qj = constant at
right angles. Then V¢' - V¢? = 0.

. D o 9q* 07

In general define Y.=Vq - V¢ = — .
& g ¢V Zk: ork ork

Note that g% is not the same as Gij-



In fact
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] aqi 8(] ectrici
Ze:gw% ) Ze: Zk: ark ork Z aqf aqﬂ Z ork Son' G a J nEAm

. . . Shapiro
= 0;j, S0 g~ is the inverse matrix to g...

If ﬁqi : ﬁqj =0fori#j, g7 =0 fori#j, g is diagonal,

so g.. is also diagonal. And as (§s)? > 0 for any non-zero e
07, g.. is positive definite, so for an orthogonal coordinate Coordinates
system the diagonal elements are positive, g;; = h?éij,

and g9 = h;25ij. Then the unit vectors are

& =hy' Z ZBmek (1)
k
with the inverse relation

ey = Zh eza ;= ZAkzez ;Aki;Bmée- (2)

As the é;, are independent, this implies ), Ap; By = Ope
or ABT = 1.




Physics 504,
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and é = ), Ayi€;, so A is orthogonal, and .. B = A. Flectricity
Can also check as Sty
Shapiro
Z Aszk] == hzhj Z(aql/ark)(c?q]/@rk) = hihjgw = (513
k k
Thus A can be written two ways, Generalized
¢’ ork
Api=hig e = hi' 2
or oq*

Note that A;; is a function of position, not a constant. In
Euclidean space we say that é, is the same vector
regardless of which point # the vector is at'. But then

€ = Z A;i(P)é; is not the same vector at different

J
points P.

IThat is, Euclidean space comes with a prescribed parallel
transport, telling how to move a vector without changing it.



Vector Fields

So for a vector field

V(P) =Y Vi(g)e; = V(e =Y Vi) Airé,
J i ik

Let’s summarize some of our previous relations:
€ = E Akiei, €; = E Aji(P)ej
i J

8q’L h_l 87"k

Ay = hij— = h; .
k ork Log

gij = Wi, g”7 =h;?6;
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e Physics 504,
Gradient of a scalar field ot
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. af aq[ ~ Shapiro
Vf = Z ork ek = Z (WW) (Akm€m)
8f8q>< ~aq> T
S o207 =5 b
l k k 4
kfm (aq or 0 Im 9
— a ~ —2 -1 8f Gradient
— % aq mem 5m€ — th 8 meTm
or
o 1 Of .
\V4 hmli m 3
fo= 2 g 3)

Both f(7) and f(q) represent the same function f(P) on
space, so we often carelessly leave out the twiddle.



Velocity of a particle
drk ork dqt
- — h
- dt Z<Zﬁq’dt> Z”a’f
dg'
Z h;6ijé; = Zhj Tl

Note it is hjdqj which has the right dimensions for an
infinitesimal length, while d¢’ by itself might not.

<
|

ﬂ)

>
Il

Example, spherical coordinates.

r spherical shells
Surfaces of constant ¢ 6 cone, vertex at 0
10} plane containing z

with the shells centered at the origin. These intersect at
right angles, so they are orthogonal coords.
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comparing to (ds)? = h2(dr)* + h2(d9)* + hi(dqﬁ)z,
we see that

hr =1, hg=r, hg=rsind.

Thus

Velocity of a

T = 1€, + r0ég + rsinfpéy P

and . .
v? = 7% + 1202 + 1% sin” 0%



Derivatives of Vectors e
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0é;
Euclidean parallel transport: S
ord
0 81"
-1 _ —1 Z
hi oq & = dqi Ork < ‘ 3q )

Derivatives of
Vectors

ork 9 Ay
o —1 v YIIN
= hj ;8(]7' ok €y

_ ZAkjaA&A



Differential Forms Al

Electricity
A general 1-form over a space coordinatized by ¢' is Magmetism
. Shapiro
i
and is associated with a vector. But if we are using
orthogonal curvilinear coordinates, it is more natural to
express the coefficients as multiplying the “normalized”
1-forms w; = h;dq’, with w = Y, A, dq = Viw;.
Then w is associated with the vector V = > Vié;.
Note that if Farmo !
0
w:df:a, Zh_l ! wi,
1 3f . e
the associated vector is V = Z h; i =Vf.



2-forms

1 .
General 2-form: w?) = 3 ZBUM Awj, with B;j = —Bj;.

ij
In three dimensions, this can be associated with a vector

_ | .
= Z Bié; with B; = 5 Zk €ijkBjk,  Bjk = Zﬁz’jsz‘-
% j )
IfV=wh and w® = dw® then

1 ~ .
w3 = 3 Z Bijwi Nwj =d (Z Vz‘hidql)
ij i

Za(Vh)d I A dg

‘ og
ij
1, 1 0(Vihy)
1 1 '
E. hz hj aqj wji N\ Wi,
]

1 1 ., [(0(V;h))  8(Vihy)
Thus =B;; = —h; 'h7! 337 .
us 5 DBii 2hz h] ( B¢ 2
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The associated vector has coefficients Ele‘;:(ifity
Magnetism
~ 1 1 0 -~ 0 - ——
B. = = E €irn— | —Vih: — —V:h: apiro
k 2 ik hlh] <8q’ J aqj ! Z>

ij
sz E”kmliljaaq% (ffjhj) .

For cartesian coordinates h; = 1, and we recognize this as
the curl of 17, so dw® = V x V, which is a
coordinate-independent statement. Thus we have for any
orthogonal curvilinear coordinates

6 X Z f/;'éi = Zemkhzlhj(‘?aql (th/J) ék. (4)

ijk

2-forms
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V - B and 3-forms S
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Finally, let’s consider a vector B= > B;é; and its
associated 2-form Shapiro

1 - 1 - .
5 Z €k Biw; AN wy, = B Z €ijBihjhidg’ N dq.

(2) _
YTy

% 7

The exterior derivative is a three-form

OB; hjh
dw® = = qukad Adg A dg"
ijke qe
1 OB; hjh
= 5 Z eiijEZ]kad A dq A dq 3-forms
ijkt

1 0 ([ hihohs ~
hihahs Z 0q; < h; wiriws s



A 3-form in three dimensions is associated with a scalar Physicsl504)
Spring 2010

function f(P) by Electricity
1 Maga:(g:ism
w® = fdrt Adr?Adr® = of zb: €apedr® A dr® A dr€ Shapiro
@9rb ore . -
= =z €abe l IAd F
f Z b 8 9 O q
abcijk
or or® ore¢
_ —1 —1 -1
- o X e (55 ('55) ('3
abcijk

wi AN wj N\ wg

1
= gf det A Z €ijkwi N wj A\ w
Z]k 3-forms

= fdetA wi Aws Aws

= fwi Awy Aws,

where det A = 1 because A is orthogonal, but also we
assume the é; form a right handed coordiate system.



So we see that if w® = B, dw® = f, with

)

1 0 ([ hihshs =
- N2 B
hihahs Z 0q; < h;

).

In cartesian coordinates this just reduces to V-B , but
this association is coordinate-independent, so we see that

in a general curvilinear coordinate system,
V-B=—— —
hihah3 ; oq <

Finally, let’s examine the Laplacian on a scalar:

1 0
hihahs ; dq' <

f

V=V .Vd =

1
hihahs

27

hihohs 0P
h?  Og¢

)

h;

hihahs Bi) ‘

hihohs , 0
B

) aqi

)

Physics 504,
Spring 2010
Electricity
and
Magnetism

Shapiro

3-forms



Physics 504,

Summary Spring 2010
Ele(;:'(iicity
. dq] _ N 1 8]5‘ Magnetism
U= Zhjﬁej, Vf= th 34 A €m; Shapiro
7 m
B} - 19/ .
V X (Z ‘/;,eZ) = Z Ewkh h 8(] (hj‘/j> €k,
% ijk
- 1 0 [ hihghs ~
v hihahs EZ: aq" < hi

1 O ([ hihahs O
h1h2h3 Z aq ( hZZ aql

For the record, even for generahzed coordinates that are
not orthogonal, we can write

Zaq 9" 87(17

3-forms

where g :=det g...



Cylindrical Polar Coordinates

Although we have developed this to deal with esoteric
orthogonal coordinate systems, such as those for your
homework, let us here work out the familiar cylindrical
polar and spherical coordinate systems.

Cylindrical Polar: r, ¢, z,
(85)* = (9r)* +1%(69)* + (32)*,
so hy, = h, =1,hg = r. Then

.. df. 10f.  Of.
vf - aTT+ ¢¢+ eza
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Polar, continued R

Electricity
5 (v 1(0V. orVy\. [0V, OV.\ .
V><< VZGZ) _r<8¢_ E)z>er+<8z_8r>e¢

and
1 (am avz> )
+= — .

Shapiro

Magnetism
r or foler
B 1@‘@_%é+ GVT_@VZ 5
N r 0¢ 0z " 0z or ¢

8V¢ 10V, 1 -
+<ar‘ra¢ +7~V¢>ez

= ~ _ 1 O(TV,.) 8V¢ 6(7”‘/,2) gg}l::d;ri:ial
v (Z ‘/Zel> - r < ar + aqs + 82 Spherical
ov, 10V, oV, 1

o Troe Tax T
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1ro P L)) o 10 coords for I D
Ve = - [* T+ =5 SRR
T 8?" 87" aqb T 8¢ Vector Fields

_i_g 82 Gradient
0z " 0z articla

1o (00 10 o |
ror \' or r2d¢? = dz? 2-forms

3-forms
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Spherical Coordinates
Spherical Coordinates:

r radius, 6 polar angle, ¢
azimuth

(65)% = (67)2412(660)2+r? sin? 0(5¢)?,
so h. =1, hg =1, hy = rsinf.

S 8]”~ 18f~ 1 of.
VIi= ot 0% T e 06
- o 1 0 0 N
VxV = p g <89rsm9V¢ 8¢TVG> ér

1 0 o . ~
+7’sin0 <8¢Vr " sm«9V¢) €p

1/0 0 .
s (aﬁ% - aa”) €
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Spherical Coordinates, continued

<l
X

<L

<i

&

1

‘|

1

1
r2sin

10

r2 Or

rsinf [89

3} 0
(sin@Vy) — 3@25%] Er

1 0 10 ]

rem60g T rar V)¢

9 o.1.
t [a (rVe) — aav]e“”

7 [(‘?7‘ (r sin B ) 880 (rsinGBg)

o9 (TB ¢)J

(#5) ey (89

+rsin9%B¢
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Spherical, continued further S T
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1 0 . 0 9 . 0P
Ve = m<5r28m95+%sm9%
o 1 09
%sin@%)
10 (45,00 1 9 /. 0¥
= o < a) * Zsin6 00 <Sm9@9)
1 0%
r2sin2 6 0¢2 SYladuenl

Spherical
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