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» Resonant Cavities
The dimensionless quantities £y, () and 7, are given by Physics 504,
Spring 2010
Electricity
d
é—TM _ 87/1 / )V#J) Maga:etism
Shapiro
Circular
linder
C - 2 ' Cy
TE -~ 2 2
60 = [ |ax S| /g [ o,
r A

C
ss

[t/ [ o,

As (p, @) = Jn(vp) cosma.

19}
8—2 = ~J,(y7) cosmg, A x Vi = ; m(p) sinme.

and nf® = ([® — ¢I®.

The angular integrals are in all case trivial (and even
more so if we used the complex modes e~ ™?).
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where x is either @, (for TM) or 2/, (for TE). The
integral is related to the orthonormalization properties of
Bessel functions. From Arfken (or “Lecture Notes” —
“Notes on Bessel functions”) we find
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The cutoff wavenumbers and frequencies are
TE __ TM _ . _
s = Jrand Y = @, /v, with wy = ey.

We also found for general cylindrical wave guides that the
attenuation coefficients are
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For both modes, we need the nontrivial
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In fact, there is an identity (see footnote again)
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for all TM modes.
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which for the lowest mode is 0.4185 + (wy/w)? compared
t0 0.5 + (wy/w)? for the square. But the cutoff frequencies
are now 1.841¢/r and v/27¢/a, so comparable dimensions
have r = 1.841a/v/21 = 0.414a.

Thus the TM fields are
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Note that in choosing signs we must keep track that half
the wave has wavenumber —k.

For TE modes, H, determines all, and must vanish at
endcaps (as 7 - B vanishes at boundaries). So

H, = sin (%) P(z,y)

H = 57; cos ( ) Vit for TE modes
withpe Z,p#0.
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For TM modes, wy = Tync/r.

For copper, the resistivity is p = o~! = 1.7 x 107 Q - m.
Take pe = po. Also wy = yac. 0y = /2/pcowy.

€ = 8.854 x 10712 C%/N - m?, so
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The units combine to m'/2 as Q = v_Jye_ Nms/C2.,
A CJ/s

In comparison to the TM12 mode for a square of side a,
we see that f™ = LA™, As the cutoff frequencies are
2.4048¢/r and /5 7rc/ a respectively, we see that the
comparable dimensions are r = (2.4048/v/57)a = 0.342a,
much smaller, and then a/2r = 1.46, so the smaller pipe
does have faster attenuation.

Resonant Cavities

In infinite cylindrical waveguide, have waves with
(angular) frequency w for each arbitrary definite
wavenumber k, with w = ¢y/k? + V§~ For each mode A
and each w > wy = ¢y), there are two modes,
Standing waves by superposition.

o T

Flat conductors at z=0 and z=d.
For TM, the determining field is z 4

E, = (w(k) 1kz+w —k) 71kz> 71«4}[

Et _ Z*Vﬂlf k) ikz +1 Vzw( k) —ikz
>\
Ey =0 at endcap so p®) = (k) (at 2=0) and sinkd = 0
(at z=d). So k =pr/d, p € Z.

Generally the 2D mode A requires two indices.

For a circular cylinder, we have angular index m,

and radial index n specifying which root of .J,, (for TM)
or of dJ(z)/dzx (for TE).

B { Zmn/R (TM modes)  Jp(@mn) =0
Ymn l';nn/R (TE modes) dJm (Tmn) =0

dx

with R the radius of the cylinder.

Now we have a third index, p.
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Wmnp with p > 0 for TE modes.

with p > 0 for TM modes,
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Lowest TM mode, woio = czo1/R = 2.405¢/R,

independent of d.

For TE modes, p # 0, so lowest mode with v = 2/, /R has  Resonant

Cavities
wiy = 1.841% 1+ 2.912R2/d2.

As this depends on d, such a cavity can be tuned by
having a movable piston for one endcap.
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with I' := wy/Q. r
| B(w)|? gives the response to ex- n
citations of any frequency, with
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This is called the Breit-Wigner response. I' is mistakenly
called the half-width. Really full-width at half-maximum.
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Power Loss and Quality Factor
What if conductor not perfect? Power losses in sides and
in endcaps. Rate is proportional to U(t), the energy
stored inside. Let

—AU = energy loss per cycle, Q:=27U/|AU]| .

One period is At = 27 /w. Assume Q > 1, so [AU| < U,
AU = —-27U/Q = (27 /w)dU/dt, so

U(t) = U(0)e "<,

Q is called the resonance “quality factor” or “Q-value”.
So if an oscillation excited at time ¢ = 0 by momentary
external influence,

U(t) o« e7/9 = B(t) = Ege (17129 Q 1),

The Heaviside function ©(t) =1 for ¢t > 0, = 0 for ¢ < 0.
This §(t) excitation consists of equal amounts at all
frequencies.

Calculation of power loss as for waveguide, but need to
include power loss in endcaps as well. Jackson, pp
373-374. We will skip this.

Earth and Ionosphere:

Not all cavities cylindrical. Consider surface of Earth, and
ionosphere, an ionized layer about 100 km up. Concentric
conducting spheres acting as endcaps, of a waveguide with
no walls, but topology!

Need spherical coordinates, of course. More generally,
may need other curvilinear coordinates (as you will for
your projects).

So we will digress to discuss curvilinear coordinates.
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