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Wave guide traveling modes in z direction Shapiro
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with dispersion relation k% = prew? — 7y.
Same form as for high-frequencies in dielectrics (Jackson

7.61), with wy ~ plasma frequency.
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for the unbounded medium. (I used kdk = pewdw)
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. Energy Flow
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+E*(z,y,k,w) x H(z,y, k,w)
+E(z,y, k,w) x H (z,y, k,w)

+E (1, k,w) x H (z,y,k, w)e—2ikz+2iwt>

First and last terms rapidly oscillating, average to zero, so
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As z- <§t1/) X Z % ﬁﬂ/}*) = ‘6,51/)‘2 , we have and

Magnetism
A _ wk = o e (for TM)
- /ARCS_ 273‘//4‘%7” {u (for TE)

The integral

/AWW :fgw*g—f —'/Aw*V?w :0+7§/A1/J*¢.

As wy =/ /1E k= w/pey /1 — wf Jw?,

1 w2 w? . € (for TM)
NG (;) =5 [ {u (for TE)
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Last slide assumed perfectly conducting walls. Real walls Shapiro
have energy lose, attenuation, k develops small positive
imaginary part i3 (so extra e #* factor for E and for H ).
Find f by comparing power lost per unit length to power
transmitted.
Power is quadratic in fields. Only real parts of fields are
real.

Poynting vector Sphyb phys

Energy Flow

x H

phys needs

Epys(®,y,2,t)
1/ o o
= 5 (E‘(w_’y_’ k’w)ezkz—zwt + E'*(x,y., k’w)e—zszrzut) )

and similarly for H.
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(S) = Z(E*(z,y, k,w) x H(z,y, k,w) Magnetism
. Shapiro
+E(@,y,kw) x H (z,y,kw))

= gRe (Bwyhow) < H'(r.y. k)
Define the complex S = % (E X H*), with the physical

average flux given by the real part.

Power flow o [ Z-ReS, so only the transverse parts of E

and H are needed. Recall

L ko - .
TM: E.=¢, Bi—isVa, Ho—=i—ixVip
'Y 05
- W -
TE: H, =1, Hf = z— ,d} Ey=—i—zxVyp
X
Energy Density Soring 2010
Electricit;
Energy per unit length o v
. . agmetism
U= [yw=4 Ly (Bobys Doys + Bphys* Hphys). Shapire
1 - i
W) = [ BP+ P
A
Donciy

Need z components (¢ or 0) as well as transverse ones.
Plugging in is straightforward (see notes), and we find

w? 5 € TM mode
=z J TE
w3 JA I mode
In either case,

P 1
Q 1-— w/\ = vg.

(0) = Ve

Energy flux = energy density times group velocity.



Attenuation and Power Loss

At an interface, we found power loss per unit area is
1 122
@) =

%0 an‘

260
with conductivity o and skin depth 6 = \/2/pcow. As the
power drops off as the square of the fields, so as e~20%

7%54‘71 x ﬁfdf.,

where the integral df is over the loop I' around the
interface at fixed z.

 will depend on the mode being considered, so we will
call it ).

Note resistivity can couple modes, but we will not discuss
that.

dP
P —20P(z) =

Attenuation for TE modes

ForaTEmode,ﬁ,xH:Axﬁt+ﬁ><2sto

N —|2
x H

L2 k2 L2
ﬁth‘ +|H.]* = <?> )ﬁxvtd)‘ + 9%
X

Again let us write

Llax sl / [ oo =Sen [1wr/ [ 108 =5a.

where () is another dimensionless number of order one,
and &) is somewhat differently defined. Then

/F‘ﬁxﬁt¢’2///‘\w\2=”v§*

Note that 3 diverges as we approach the cutoff frequency
W = Wy,

and By ~ y/w as w — 00.

Thus there is a minimum, at /3wy for TM, and at a
geometry-dependent value for TE modes.
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Attenuation for TM modes

Electricity

For a TM mode, Maga:edtism

. . i cw N Shapiro

iox H=hx Hy = 20 x (5 x Vigh) = o (ﬁ-vtz/;) 3
Tx ’Y,\
S0
1 ew wke Attenuation
3 = — | = ’v
[)\ 400 (’y/% 2’}/)\ 1/)
= ‘VU)
C{A/A

where C'is the length of I" and A the area, and &) is a
mode— and geometry—dependent dimensionless number,
the average size of the normal derivative to the gradient,
which we would expect to be of order 1.
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The conductivity, permeability and permittivity may be and
considered approximately frequency-independent, but the Magnetism
skin depth & goes as w™1/2, so let us write § = I/ wy/w. Shapiro

Then we can extract the frequency dependence of the
attenuation factors

TM mode:
AT \/; oo 24 [ 5
Vi E
TE mode:

C \/w/w)\ wy\ 2
\EU(SA 24 [5“”” () } ’
1/1_&
(1.)2

where 1y = () — &)
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‘We will skip section 8.6



