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Wave velocities

Wave guide traveling modes in z direction

~E, ~B ∝ eikz−iωt

with dispersion relation k2 = µεω2 − γ2
λ.

Same form as for high-frequencies in dielectrics (Jackson
7.61), with ωλ ∼ plasma frequency.

Phase velocity vp =
ω

k
=

1
√
µε

1√
1−

(
ωλ
ω

)2 > 1
√
µε
,

greater than for unbounded.

Group velocity vg =
dω

dk
=

1
µε

k

ω
=

1
µε

1
vp

<
1
√
µε
, less than

for the unbounded medium. (I used kdk = µεωdω)
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Attenuation

Last slide assumed perfectly conducting walls. Real walls
have energy lose, attenuation, k develops small positive
imaginary part iβ (so extra e−βz factor for ~E and for ~H).
Find β by comparing power lost per unit length to power
transmitted.
Power is quadratic in fields. Only real parts of fields are
real.
Poynting vector ~Sphys = ~Ephys × ~Hphys needs

~Ephys(x, y, z, t)

=
1
2

(
~E(x, y, k, ω)eikz−iωt + ~E∗(x, y, k, ω)e−ikz+iωt

)
.

and similarly for ~H.
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So

~Sphys = ~Ephys × ~Hphys

=
1
4

((
~E(x, y, k, ω)eikz−iωt + ~E∗(x, y, k, ω)e−ikz+iωt

)
×

(
~H(x, y, k, ω)eikz−iωt + ~H∗(x, y, k, ω)e−ikz+iωt

))

=
1
4

(
~E(x, y, k, ω)× ~H(x, y, k, ω)e2ikz−2iωt

+ ~E∗(x, y, k, ω)× ~H(x, y, k, ω)
+ ~E(x, y, k, ω)× ~H∗(x, y, k, ω)

+ ~E∗(x, y, k, ω)× ~H∗(x, y, k, ω)e−2ikz+2iωt

)

First and last terms rapidly oscillating, average to zero, so



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Energy

Wave
velocities

Energy Flow

Energy
Density

Attenuation

〈~S〉 =
1
4

(
~E∗(x, y, k, ω)× ~H(x, y, k, ω)

+ ~E(x, y, k, ω)× ~H∗(x, y, k, ω)
)

=
1
2

Re
(
~E(x, y, k, ω)× ~H∗(x, y, k, ω)

)
Define the complex ~S := 1

2

(
~E × ~H∗

)
, with the physical

average flux given by the real part.
Power flow ∝

∫
ẑ · Re~S, so only the transverse parts of ~E

and ~H are needed. Recall

TM: Ez = ψ, ~Et = i
k

γ2
λ

~∇tψ, ~Ht = i
εω

γ2
λ

ẑ × ~∇tψ

TE: Hz = ψ, ~Ht = i
k

γ2
λ

~∇tψ, ~Et = −iµω
γ2
λ

ẑ × ~∇tψ
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As ẑ ·
(
~∇tψ × ẑ × ~∇tψ∗

)
=
∣∣∣~∇tψ∣∣∣2 , we have

P = ẑ ·
∫
A

ReS =
ωk

2γ4
λ

∫
A
|~∇tψ|2 ·

{
ε (for TM)
µ (for TE)

The integral∫
A
|~∇tψ|2 =

∮
S
ψ∗
∂ψ

∂n
−
∫
A
ψ∗∇2

tψ = 0 + γ2
λ

∫
A
ψ∗ψ.

As ωλ := γλ/
√
µε, k = ω

√
µε
√

1− ω2
λ/ω

2,

P =
1

2
√
µε

(
ω

ωλ

)2
√

1−
ω2
λ

ω2

∫
A
ψ∗ψ ·

{
ε (for TM)
µ (for TE)
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Energy Density

Energy per unit length
U =

∫
A u = 1

2

∫
A

(
~Ephys · ~Dphys + ~Bphys · ~Hphys

)
,

〈U〉 =
1
4

∫
A
ε| ~E|2 + µ| ~H|2

Need z components (ψ or 0) as well as transverse ones.
Plugging in is straightforward (see notes), and we find

〈U〉 =
ω2

2ω2
λ

∫
A
|ψ|2 ×

{
ε TM mode
µ TE mode

In either case,

〈P 〉
〈U〉

=
1
√
εµ

√
1−

ω2
λ

ω2
= vg.

Energy flux = energy density times group velocity.
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Attenuation and Power Loss

At an interface, we found power loss per unit area is

1
2δσ

∣∣∣ ~H‖∣∣∣2 =
1

2δσ

∣∣∣n̂× ~H
∣∣∣2 ,

with conductivity σ and skin depth δ =
√

2/µcσω. As the
power drops off as the square of the fields, so as e−2βz

dP

dz
= −2βP (z) = − 1

2δσ

∮
Γ

∣∣∣n̂× ~H
∣∣∣2 d`,

where the integral d` is over the loop Γ around the
interface at fixed z.
β will depend on the mode being considered, so we will
call it βλ.
Note resistivity can couple modes, but we will not discuss
that.
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Attenuation for TM modes

For a TM mode,

n̂× ~H = n̂× ~Ht =
iεω

γ2
λ

n̂× (ẑ × ~∇tψ) =
iεω

γ2
λ

(
n̂ · ~∇tψ

)
ẑ

so

βλ =
1

4σδ

(
εω

γ2
λ

)2 ∫
Γ

∣∣∣∣∂ψ∂n
∣∣∣∣2
/

ωkε

2γ4
λ

∫
A

∣∣∣~∇ψ∣∣∣2
=

ωε

2kσδ

∫
Γ

∣∣∣∣∂ψ∂n
∣∣∣∣2
/∫

A

∣∣∣~∇ψ∣∣∣2︸ ︷︷ ︸
Cξλ/A

where C is the length of Γ and A the area, and ξλ is a
mode– and geometry–dependent dimensionless number,
the average size of the normal derivative to the gradient,
which we would expect to be of order 1.



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Energy

Wave
velocities

Energy Flow

Energy
Density

Attenuation

Attenuation for TE modes

For a TE mode, n̂× ~H = n̂× ~Ht + n̂× ẑHz so∣∣∣n̂× ~H
∣∣∣2 =

∣∣∣n̂× ~Ht

∣∣∣2 + |Hz|2 =
(
k

γ2
λ

)2 ∣∣∣n̂× ~∇tψ
∣∣∣2 + |ψ|2.

Again let us write∫
Γ

∣∣∣n̂× ~∇tψ
∣∣∣2/∫

A

∣∣∣~∇ψ∣∣∣2 =
C

A
ξλ,

∫
Γ
|ψ|2
/∫

A
|ψ|2 =

C

A
ζλ.

where ζλ is another dimensionless number of order one,
and ξλ is somewhat differently defined. Then∫

Γ

∣∣∣n̂× ~∇tψ
∣∣∣2/∫

A
|ψ|2 = γ2

λ

C

A
ξλ.
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Frequency Dependence
The conductivity, permeability and permittivity may be
considered approximately frequency-independent, but the
skin depth δ goes as ω−1/2, so let us write δ = δλ

√
ωλ/ω.

Then we can extract the frequency dependence of the
attenuation factors
TM mode:

βλ =
√
ε

µ

1
σδλ

C

2A

√
ω/ωλ√

1−
ω2
λ

ω2

ξλ.

TE mode:

βλ =
√
ε

µ

1
σδλ

C

2A

√
ω/ωλ√

1−
ω2
λ

ω2

[
ξλ + ηλ

(ωλ
ω

)2
]
,

where ηλ = ζλ − ξλ.
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Note that βλ diverges as we approach the cutoff frequency
ω → ωλ,
and βλ ∼

√
ω as ω →∞.

Thus there is a minimum, at
√

3ωλ for TM, and at a
geometry-dependent value for TE modes.
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SKIP

We will skip section 8.6
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