Wave guide traveling modes in z direction

$$\vec{E}, \vec{B} \propto e^{ikz - i\omega t}$$

with dispersion relation $k^2 = \mu \epsilon \omega^2 - \gamma_{\lambda}^2$. Same form as for high-frequencies in dielectrics (Jackson 7.61), with $\omega_{\lambda} \sim$ plasma frequency.

Phase velocity
$$v_p = \frac{\omega}{k} = \frac{1}{\sqrt{\mu\epsilon}} \frac{1}{\sqrt{1 - \left(\frac{\omega_{\lambda}}{\omega}\right)^2}} > \frac{1}{\sqrt{\mu\epsilon}},$$

greater than for unbounded.

Group velocity
$$v_g = \frac{d\omega}{dk} = \frac{1}{\mu\epsilon} \frac{k}{\omega} = \frac{1}{\mu\epsilon} \frac{1}{v_p} < \frac{1}{\sqrt{\mu\epsilon}}$$
, less than for the unbounded medium. (I used $kdk = \mu\epsilon\omega d\omega$)

Last slide assumed perfectly conducting walls. Real walls have energy lose, attenuation, k develops small positive imaginary part $i\beta$ (so extra $e^{-\beta z}$ factor for \vec{E} and for \vec{H}). Find β by comparing power lost per unit length to power transmitted.

Power is quadratic in fields. Only real parts of fields are real.

Poynting vector $\vec{S}_{\rm phys} = \vec{E}_{\rm phys} \times \vec{H}_{\rm phys}$ needs

$$\begin{split} \vec{E}_{\text{phys}}(x,y,z,t) \\ &= \frac{1}{2} \left(\vec{E}(x,y,k,\omega) e^{ikz-i\omega t} + \vec{E}^*(x,y,k,\omega) e^{-ikz+i\omega t} \right). \end{split}$$

and similarly for \vec{H} .

Energy Flow

$$\begin{split} \vec{S}_{\text{phys}} &= \vec{E}_{\text{phys}} \times \vec{H}_{\text{phys}} \\ &= \frac{1}{4} \Bigg(\Big(\vec{E}(x,y,k,\omega) e^{ikz - i\omega t} + \vec{E}^*(x,y,k,\omega) e^{-ikz + i\omega t} \Big) \times \\ & \Big(\vec{H}(x,y,k,\omega) e^{ikz - i\omega t} + \vec{H}^*(x,y,k,\omega) e^{-ikz + i\omega t} \Big) \Bigg) \\ &= \frac{1}{4} \Bigg(\vec{E}(x,y,k,\omega) \times \vec{H}(x,y,k,\omega) e^{2ikz - 2i\omega t} \\ & + \vec{E}^*(x,y,k,\omega) \times \vec{H}(x,y,k,\omega) \\ & + \vec{E}(x,y,k,\omega) \times \vec{H}^*(x,y,k,\omega) \\ & + \vec{E}^*(x,y,k,\omega) \times \vec{H}^*(x,y,k,\omega) e^{-2ikz + 2i\omega t} \Bigg) \end{split}$$

First and last terms rapidly oscillating, average to zero, so

$$\begin{split} \langle \vec{S} \rangle &= \frac{1}{4} \Big(\vec{E}^*(x,y,k,\omega) \times \vec{H}(x,y,k,\omega) \\ &+ \vec{E}(x,y,k,\omega) \times \vec{H}^*(x,y,k,\omega) \Big) \\ &= \frac{1}{2} \mathrm{Re} \left(\vec{E}(x,y,k,\omega) \times \vec{H}^*(x,y,k,\omega) \right) \end{split}$$

Define the complex $\vec{S} := \frac{1}{2} \left(\vec{E} \times \vec{H}^* \right)$, with the physical average flux given by the real part.

Power flow $\propto \int \hat{z} \cdot \text{Re} \vec{S}$, so only the transverse parts of \vec{E} and \vec{H} are needed. Recall

TM:
$$E_z = \psi, \quad \vec{E}_t = i \frac{k}{\gamma_{\lambda}^2} \vec{\nabla}_t \psi, \quad \vec{H}_t = i \frac{\epsilon \omega}{\gamma_{\lambda}^2} \hat{z} \times \vec{\nabla}_t \psi$$

TE: $H_z = \psi, \quad \vec{H}_t = i \frac{k}{\gamma_{\lambda}^2} \vec{\nabla}_t \psi, \quad \vec{E}_t = -i \frac{\mu \omega}{\gamma_{\lambda}^2} \hat{z} \times \vec{\nabla}_t \psi$

$$P = \hat{z} \cdot \int_A \operatorname{Re} S = \frac{\omega k}{2\gamma_\lambda^4} \int_A |\vec{\nabla}_t \psi|^2 \cdot \begin{cases} \epsilon & \text{(for TM)} \\ \mu & \text{(for TE)} \end{cases}$$

The integral

$$\int_A |\vec{\nabla}_t \psi|^2 = \oint_S \psi^* \frac{\partial \psi}{\partial n} - \int_A \psi^* \nabla_t^2 \psi = 0 + \gamma_\lambda^2 \int_A \psi^* \psi.$$

As
$$\omega_{\lambda} := \gamma_{\lambda} / \sqrt{\mu \epsilon}, \ k = \omega \sqrt{\mu \epsilon} \sqrt{1 - \omega_{\lambda}^2 / \omega^2},$$

$$P = \frac{1}{2\sqrt{\mu\epsilon}} \left(\frac{\omega}{\omega_{\lambda}}\right)^{2} \sqrt{1 - \frac{\omega_{\lambda}^{2}}{\omega^{2}}} \int_{A} \psi^{*} \psi \cdot \begin{cases} \epsilon & \text{(for TM)} \\ \mu & \text{(for TE)} \end{cases}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave velocities
Energy Flow
Energy Density
Attenuation

Energy Density

Energy per unit length

$$U = \int_A u = \frac{1}{2} \int_A \left(\vec{E}_{\text{phys}} \cdot \vec{D}_{\text{phys}} + \vec{B}_{\text{phys}} \cdot \vec{H}_{\text{phys}} \right),$$

$$\langle U \rangle = \frac{1}{4} \int_A \epsilon |\vec{E}|^2 + \mu |\vec{H}|^2$$

Need z components (ψ or 0) as well as transverse ones. Plugging in is straightforward (see notes), and we find

$$\langle U \rangle = \frac{\omega^2}{2\omega_\lambda^2} \int_A |\psi|^2 \times \begin{cases} \epsilon & \text{TM mode} \\ \mu & \text{TE mode} \end{cases}$$

In either case,

$$\frac{\langle P \rangle}{\langle U \rangle} = \frac{1}{\sqrt{\epsilon \mu}} \sqrt{1 - \frac{\omega_{\lambda}^2}{\omega^2}} = v_g.$$

Energy flux = energy density times group velocity.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave velocities Energy Flow Energy Density Attenuation

$$\frac{1}{2\delta\sigma}\left|\vec{H}_{\parallel}\right|^{2} = \frac{1}{2\delta\sigma}\left|\hat{n}\times\vec{H}\right|^{2},$$

with conductivity σ and skin depth $\delta = \sqrt{2/\mu_c \sigma \omega}$. As the power drops off as the square of the fields, so as $e^{-2\beta z}$

$$\frac{dP}{dz} = -2\beta P(z) = -\frac{1}{2\delta\sigma} \oint_{\Gamma} \left| \hat{n} \times \vec{H} \right|^2 d\ell,$$

where the integral $d\ell$ is over the loop Γ around the interface at fixed z.

 β will depend on the mode being considered, so we will call it β_{λ} .

Note resistivity can couple modes, but we will not discuss that.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave velocities Energy Flow Energy Density Attenuation

$$\hat{n} \times \vec{H} = \hat{n} \times \vec{H}_t = \frac{i\epsilon\omega}{\gamma_\lambda^2} \hat{n} \times (\hat{z} \times \vec{\nabla}_t \psi) = \frac{i\epsilon\omega}{\gamma_\lambda^2} \left(\hat{n} \cdot \vec{\nabla}_t \psi \right) \hat{z}$$

SO

$$\beta_{\lambda} = \frac{1}{4\sigma\delta} \left(\frac{\epsilon\omega}{\gamma_{\lambda}^{2}}\right)^{2} \int_{\Gamma} \left|\frac{\partial\psi}{\partial n}\right|^{2} / \frac{\omega k\epsilon}{2\gamma_{\lambda}^{4}} \int_{A} \left|\vec{\nabla}\psi\right|^{2}$$
$$= \frac{\omega\epsilon}{2k\sigma\delta} \underbrace{\int_{\Gamma} \left|\frac{\partial\psi}{\partial n}\right|^{2} / \int_{A} \left|\vec{\nabla}\psi\right|^{2}}_{C\xi_{\lambda}/A}$$

where C is the length of Γ and A the area, and ξ_{λ} is a mode– and geometry–dependent dimensionless number, the average size of the normal derivative to the gradient, which we would expect to be of order 1.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave velocities Energy Flow Energy Density Attenuation

For a TE mode, $\hat{n} \times \vec{H} = \hat{n} \times \vec{H}_t + \hat{n} \times \hat{z}H_z$ so

$$\left|\hat{n} \times \vec{H}\right|^2 = \left|\hat{n} \times \vec{H}_t\right|^2 + |H_z|^2 = \left(\frac{k}{\gamma_\lambda^2}\right)^2 \left|\hat{n} \times \vec{\nabla}_t \psi\right|^2 + |\psi|^2.$$

Again let us write

$$\int_{\Gamma} \left| \hat{n} \times \vec{\nabla}_t \psi \right|^2 / \int_{A} \left| \vec{\nabla} \psi \right|^2 = \frac{C}{A} \xi_{\lambda}, \quad \int_{\Gamma} |\psi|^2 / \int_{A} |\psi|^2 = \frac{C}{A} \zeta_{\lambda}.$$

where ζ_{λ} is another dimensionless number of order one, and ξ_{λ} is somewhat differently defined. Then

$$\int_{\Gamma} \left| \hat{n} \times \vec{\nabla}_t \psi \right|^2 / \int_{A} |\psi|^2 = \gamma_\lambda^2 \frac{C}{A} \xi_\lambda.$$

The conductivity, permeability and permittivity may be considered approximately frequency-independent, but the skin depth δ goes as $\omega^{-1/2}$, so let us write $\delta = \delta_\lambda \sqrt{\omega_\lambda/\omega}$. Then we can extract the frequency dependence of the attenuation factors

TM mode:

$$\beta_{\lambda} = \sqrt{\frac{\epsilon}{\mu}} \frac{1}{\sigma \delta_{\lambda}} \frac{C}{2A} \frac{\sqrt{\omega/\omega_{\lambda}}}{\sqrt{1 - \frac{\omega_{\lambda}^{2}}{\omega^{2}}}} \xi_{\lambda}.$$

TE mode:

$$\beta_{\lambda} = \sqrt{\frac{\epsilon}{\mu}} \, \frac{1}{\sigma \delta_{\lambda}} \, \frac{C}{2A} \, \frac{\sqrt{\omega/\omega_{\lambda}}}{\sqrt{1 - \frac{\omega_{\lambda}^2}{\omega^2}}} \, \left[\xi_{\lambda} + \eta_{\lambda} \left(\frac{\omega_{\lambda}}{\omega} \right)^2 \right],$$

where $\eta_{\lambda} = \zeta_{\lambda} - \xi_{\lambda}$.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave
velocities
Energy Flow
Energy
Density
Attenuation

Note that β_{λ} diverges as we approach the cutoff frequency $\omega \to \omega_{\lambda}$, and $\beta_{\lambda} \sim \sqrt{\omega}$ as $\omega \to \infty$.

Thus there is a minimum, at $\sqrt{3}\omega_{\lambda}$ for TM, and at a geometry-dependent value for TE modes.

Wave velocities Energy Flow Energy Density Attenuation

SKIP

We will skip section 8.6

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Wave velocities
Energy Flow
Energy
Density
Attenuation