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with dispersion relation k? = prew? — 7)2\.
Same form as for high-frequencies in dielectrics (Jackson
7.61), with wy ~ plasma frequency.
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for the unbounded medium. (I used kdk = pewdw)

Group velocity vy = , less than



Attenuation

Last slide assumed perfectly conducting walls. Real walls
have energy lose, attenuation, k develops small positive

imaginary part i3 (so extra e~%* factor for E and for H ).

Find § by comparing power lost per unit length to power
transmitted.

Power is quadratic in fields. Only real parts of fields are
real.

Poynting vector S X ﬁp needs

phys = Fphys hys

Ephys(x> Y, z, t)
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and similarly for H.
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First and last terms rapidly oscillating, average to zero, so



Define the complex S =

1/ -
Z(E*(x7y7k7w) X H(x7y7k7w)

+E(a:, Y, k,w) X ﬁ*(m, y, k, w))

fRe( (z,y, k,w) x H*(z,y, k, w))

average flux given by the real part.
Power flow oc [ 2 - ReS, so only the transverse parts of E

and H are needed. Recall
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- S L2
As % - (Vﬂb X 2 X Vﬂ[}*) = ‘Vﬂb‘ , we have
. wk = € (for TM)
P=%.[ ReS=—— [ |[Vi*-
= res = [Pl ey
The integral
= *8 * *
[ =f st - [ wviv—0+92 [ we
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As wy =/ Ve k= w/pey /1 — wi/w?,

1 w > w? . € (for TM)
P‘2m<w> S [l e
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Energy Density Spemg 2010

Electricity
Energy per unit length ol
agnetism
U= fA =3 fA ( phys Dphys + Bphys thys)v Shapiro
1 - -
) =5 [ AEP+ P
A

Energy
Density

Need z components (1 or 0) as well as transverse ones.
Plugging in is straightforward (see notes), and we find

/ 2 x € TM mode
2w>\ 7 TE mode
In either case,

P 1 2
Y G,

0~ v\

Energy flux = energy density times group velocity.



Attenuation and Power Loss
At an interface, we found power loss per unit area is

nx H| |
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with conductivity ¢ and skin depth § = \/2/ucow. As the
power drops off as the square of the fields, so as e~2%*

dP 1

where the integral d¢ is over the loop I' around the
interface at fixed z.

6 will depend on the mode being considered, so we will
call it 3.

Note resistivity can couple modes, but we will not discuss
that.
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For a TM mode, and

Magnetism
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where C' is the length of I' and A the area, and &) is a
mode— and geometry—dependent dimensionless number,
the average size of the normal derivative to the gradient,
which we would expect to be of order 1.
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Attenuation for TE modes

For a TE mode, & x H =7 x Hy + 7 x 2H, so

L2 L2 N ENZ . - 2 )
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Again let us write

/F‘ﬁX6tw’2//A‘ﬁ¢’2_j§>\v /FW’Q//AW‘Q_iCA'

where (), is another dimensionless number of order one,
and ¢, is somewhat differently defined. Then

Llax gl / [ 1wr=+35e.

Physics 504,
Spring 2010
Electricity
and
Magnetism

Shapiro

Attenuation



Frequency Dependence
The conductivity, permeability and permittivity may be
considered approximately frequency-independent, but the
skin depth & goes as w™ /2, so let us write § = Iny/wy/w.
Then we can extract the frequency dependence of the
attenuation factors

TM mode:
Br = \/7 ¢ m
[T N 24
W_E
TE mode:
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where 1) = () — &\
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Note that () diverges as we approach the cutoff frequency

W — Wi,

and () ~ /w as w — oo. Jyra———
Thus there is a minimum, at V3w, for TM, and at a
geometry-dependent value for TE modes.



SKIP

We will skip section 8.6
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