Physics 504, Spring 2010
Electricity and Magnetism

Joel A. Shapiro
shapiro@physics.rutgers.edu

January 21, 2010

Course Content

Last term you covered Jackson, Chapters 1—7
We will cover most of chapters 816

Everything comes from Maxwell’s Equations and the
Lorentz Force. We will discuss:
» EM fields confined: waveguides, cavities, optical
fibers
» Sources of fields: antennas and their radiation,
scattering and diffraction

v

Relativity, and relativistic formalism for E&M

v

Relativistic particles

v

other gauge theories

In “Ponderable Media”

In the last slide, p,; and J;H represent all charges, both
“free” and “induced”.
Separate “free” from “induced”:
» For the electric field
» I called electric field
» P called electric polarization is induced field
» D called electric displacement is field of “free charges’
» D=¢E+P
» For the magnetic field
» B called magnetic induction (unfortunately)
> M called magnetization is the induced field
> H called magnetic field
» H=LB-M
Ho
Then the two Maxwell equations with sources, Gauss for
E and Ampere, get replaced by

J

v.-D
. - 9D .
VxH—g = J

Il
)
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Course Information

» Instructor:

» Joel Shapiro
» Serin 325
> 5-5500 X 3886, shapiro@physics
» Book: Jackson: Classical Electrodynamics (3rd Ed.)
» Web home page:
www.physics.rutgers.edu/grad/504
contains general info, syllabus, lecture and other
notes, homework assignments, etc.
» Classes: ARC 207, Monday and Thursday,
10:20 (sharp!) - 11:40
» Homework: there will be one or two projects, and
homework assignments every week or so. Due dates
to be discussed.
Exams: a midterm and a final.
Office Hour: Tuesdays, 3:30-4:30, in Serin 325.

v

v

Maxwell’s Equations

V-E = —pa Gauss for E
€0

V-B = 0 Gauss for B
. - 10E - R
V xB-— 25 - poJy  Ampere (+Max)
- . 0B
VxFE 837 =0 Faraday

Interface between conductor and
non-conductor

Conductor c: if perfect, no E.
Surface charge ¥, eddy currents
so no H inside conductor.

Just outside the conductor:
Faraday on loop I' — Ejj ~ 0
Gauss on pillbox S — B ~0
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For good (not perfect) conductor, take J = oE with large

conductivity o. Assume time-dependence o< et

Skin depth &, H varies rapidly.
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— 1 2 4 ,5 = Interface
VXHC:JJra—tzUE,
= - 0B .
V x E, i twpeH,
Rapid variation with depth & dominates, V= —ﬁ% and
I A, . i E,
Bo=ly—_Llp 0 g _ 150
o o dE Wite 173

From H, = ﬁ"e’f/‘seif/‘s,

i, LW . )
Ee=——ix 8860 =1/ ’20 (1 —i)ivx Hye 8¢’/

which means, by continuity, that just outside the

conductor
. [ prew o
EH: g(lfl)nXHHA

In terms of surface current
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— "o . 1 . o0 )
Ko = /0 e J(€) = fsz”/O dg(l_i)e—s(lﬂ)/s

0
= nx FI I

Thus P 1

loss 12

= —|K.g|".
dA T 2g0! Rel

1. . . E”
— is surface resistance (per unit area) and —— =
od Ko

is the surface impediance Z.

Power Loss

1—14

oo

. ; .
Ax H, = w;ﬂﬁx <fzx a%)

- hox | fx Ax—aZﬁc
= owucn X |n o

o )
= ﬁg—gz(an)

2
Simple DEQ, exponential solution, with 6 = s
V sewo
H, = ﬁ“efﬁ/ﬁeif/ﬂ

Hj is tangential field outside surface of conductor.

How much power is dissipated (per unit area?). 2 ways:
1) Flow of energy into conductor: Energy flow given by
S =Ex ﬁ, for real fields £ and H.

so! (§) = 1Re (E X ﬁ*),

—2
dPIoss _ s
A = ~hes)
1 e RN 7 [
= —5,/ 20n~Re [(l—z)(anH)XHH
Lewd | = o 1 =09
=~ HIF =5 5H)l

Method 2, Ohmic heating, power lost per unit volume
LT E*=|J12/20, |J| = 0 E, = Y2|H|e~¢/%, the power
loss per unit area is
dPyoss 1 “2/OC —2¢/5 L5
Zloss . — __ |FH d £/6 - H 2.
A 52o Al | dee 555 /1l
Agrees with method 1.

'The %, Re, and * will be discussed in-lecture 3.

Wave Guides
For electromagnetic fields with a fixed geometry of linear
materials, fourier transform decouples, and we can work
with frequency modes,
E(@#t) = E(z,y,2)e ™
B(#t) = B(z,y,z) e ™t

Actually the fields are the real parts of these complex
expressions.
If p =0, J =0, Maxwell gives

oB _ .

ﬁxﬁzfa:in, V.-E=0, V-B=0,
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and similarly for I3, so we get Helmholtz equations Blectrivity

Magnetism

(V2 + wzue) E =0, (V2 + wzue) B=o. Shapiro

Consider a waveguide, a cylinder of arbitrary cross section

but uniform in z. Fourier transform in z

‘Wave Guides

Ez,y,z,t) = E(z,y)e ™t

B(z,y,2,t) = B(z,y)e* !

k can take either sign (and a standing wave is a
superposition of k = £|k|). The Helmholtz equations give

E(z,y) 0? 02

[VF+ (pew? — k%)) (E(;r o)

Divergencelessness: Physics 504,
Spring 2010
. . (9Ez R R (r)BZ Electricity
— _ d
Vi-Ei+ 02 0, V- By + 9. 0. Magnetism
Shapiro

Equations (1) and (2), with the fourier transform in z,
give
lkEt +iwZ X Et = 6th
ikBy —iwpez x By = VB, (4)

(3) ‘Wave Guides

Solving 4 for B, and plugging into 3, and then the reverse
for Ey, give

‘kﬁth —wzZ X ﬁf,BZ

! w?pe — k2

ikﬁth -+ UJ}L62 X ﬁtEZ
w?pe — k2

E, = (5)

B =

(6)

Unless k? = k3 := pew?, E, and B, determine the rest.
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In general, nonzero solutions exist only for discrete values
of v, and those values are generally different for Dirichlet
and for Neumann. So we need to consider
» TEM modes, with E.(z,y) = B.(x,y) = 0. That is,
there are no longitudinal fields, both electric (E) and
magnetic (M) fields are purely transverse to the

Shapiro

TEM, TE, and

direction z of propagation. TM Modes
» TE modes, E.(z,y) = 0, and the transverse fields are
determined by the gradiant of B, = 1, a solution of
(7) with Neumann conditions.
» TM modes, B,(z,y) = 0, and the transverse fields
are determined by E, = 9, a solution of (7) with zero
boundary conditions.

Decompose longitudinal and transverse
Let .
E Lz

E,
B B, 12

WA
<

E=
B=nB.:

+E
— with
+ By

(VXE). = (VixE).=iwB.,

L OF .
(VxE), = 2><8—L7£><V,,Ez:int4
z
For any vector V, 2 x (4 x V) = =V + 2(2- V), so for a
transverse vector 2 x (2 x V;) = —V;. Taking Z x last
equation,
0E, - _
(th — VB, = —iw? x B, (1)
Similarly decomposition of VxB= —iw,ueE gives
(ﬁt X EL) = —iwpek,
B & a
(“)7t — VB, = iwpez x Ej. (2)
z

We have seen that E, and B, largely determine the fields,
and these satisfy the two-dimensional Helmholtz equation

(V? + 72) =0 with 7% = pew? — k? (7)
If the walls of the waveguide are very good conductors, we
may impose the perfect conductor conditions E) ~ 0 and
B, ~ 0 on the boundary S of the two-dimensional cross
section. E. is parallel to the boundary so E.[¢ = 0. Also
the component of Et parallel to the boundary vanishes at
the wall, so Ey is in the +# direction. Then from the 7
component of (2) (normal to the boundary)

on - By
0z

0B,
an

—ﬁ.ﬁtB;;:iwueﬁ-(szL):o- =0,

where 9/0n is the derivative normal to the surface. So we
have Dirichlet conditions on £, and Neumann conditions
for B,.

TEM modes

With E.(z,y) = B.(z,y) =0, (5) and (6) = everything
vanishes or the denominator vanishes,

with ko = /pew

Wave travels || z with speed 1/,/u€, same as for infinite
medium. No dispersion.

Vi-Ey=0and Vy x By =iwB, =0, s0 3¢ 5 F; = —V;®
(though ® might not be single valued) and V2® = 0.

As EH o= 0, ® = constant on each boundary. If cross

k = *ko

section simply connected, ¢ = constant, E=0
No TEM modes on simply connected cylinder
Yes TEM modes on coaxial cable, or two parallel wires.
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TE and TM modes

Equations (5) and (6) simplify for
» TM modes, B, =0, Vzﬁt = ikﬁf,EZ,
V2B = ipewz x Vi E,, so H = ewk 12 x Ej.
» TE modes, E, = O 72§t = ikﬁtBZ
V2B, = —iws x VB, so

Ey= —wz x Bk = H, = k2 x B/ pw.
zZX

In either case, ﬁt % X EL, with

| kjew=(k/ko)\/p/e TM
| mw/k = (ko/k)\/unfe TE

Example: Circular Wave Guide
Jackson does rectangle. You should too. Needed to do
homework.

We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates p, ¢, with

wol0 0 1

h ——p—

00,°0p o Y V9= RO,

(Vi+¥) ¢ =
10 OR 1 P*D(¢)
(pﬁip (‘Tp +7"°R(p )> ®(¢) + ?R(ﬂ) 900 0.

Divide by R(p)®(¢) and multiply by p?:

1 19} 5 9 )
S R
7 (#3505 270
1 0°0(¢)
B(¢) 00
Solving it
P first: 62<I>(¢)
a5 T C2(6) =0

D(¢) = EiIV0s Periodicity = v/C' = m € Z.
Now R(p):
9 0 2 2 2
—p=— - R(p)=0
<papp8p +7°p° —m” | R(p)
Bessel equation, solutions regular at origin are

Z Am \n Jm (7mn ,U) F”mp

m,n

R(p) < Jm(vp), so ¥(p,¢

Ymn 18 determined by boundary conditions...
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To Summarize

Solutions given by ¥ (z,y), with (V7 ++2) ¢ =0, Ele::f_ity
,72 — HEUJ2 _ k.Q7 by Magnetism
Shapiro
TM: E, = weik:zfiwt’ Et _ ik7726tweisziwt
with ¢|p=0
TE: H, = weik'z—iwt7 ﬁt _ Z’k"y_2ﬁt’¢)6ik'z_i(‘)t

with 7 - V,p = 0

TEM modes

By looking at 0 = fA P* (V,2 + "/2) 1 we can show 72 > 0.
There are solutions for discrete values 7y, so only certain
wave numbers k) for a given frequency can propagate:

2 2 2
kx = pew” =3,

and only frequencies w > wy := 7,/ /l€ can propagate,
and k) < /i€ w, the infinite medium wavenumber. Phase
velocity v, = w/k) is greater than in the infinite medium.
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Jackson does rectangle. You should too. Needed to do Blectrivity
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We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates p, ¢, with
10 0 1 92
2 _
i T try = R(p)P (),
t pap 3p+,028¢2’ ry l/’(ﬂﬂﬁ) (ﬂ) (¢)/
(v% + ,YQ) ’L/) — Example

19 OR 1, 0°0(¢) _
(3ot +7R0) 20) + 7)1 o,

pop” op
Divide by R(p)®(4) and multiply by p?:
1 0 OR 5 4 >
—— +7°p°R = C
R(p) < Pop" 00 (v)
1 920
oo 2¢) = —C.
(9) 90
Physics 504,
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For TM, ¢(r,¢) = 0= Jn(y7) = 0, 80 Vi = Ty /T Shapiro

where x,, is the n’th value of x > 0 for which .J,,,(z) = 0,
given on page 114.

For TE, 7t - Vyip(r, ¢) = 0 = “m (7)) = 0, 50

o=l /r where 2/ is the n ’th value of x > 0 for

which dJ x)/dx = 0, given on page 370.

Example

Thus the lowest cutoff frequency is the m = 1 TE mode,
with 2}, = 1.841 while the lowest TM mode or circularly
symmetric mode has zg; = 2.405.

For a waveguide 5 cm in diameter, with air or vacuum
inside, the cutoff frequencies are f = 5= = 3.5 GHz for
the lowest TE and 4.6 GHz for the lowcst TM modes.



