Physics 504, Spring 2010 **Electricity and Magnetism**

Joel A. Shapiro shapiro@physics.rutgers.edu

January 21, 2010

4D + 4D + 4E + 4E + E + 990

4 D F 4 D F 4 E F 4 E F E 9940

Course Information

- ► Instructor:
 - ▶ Joel Shapiro
 - ► Serin 325
 - 5-5500 X 3886, shapiro@physics
- ▶ Book: Jackson: Classical Electrodynamics (3rd Ed.)
- ► Web home page: www.physics.rutgers.edu/grad/504 contains general info, syllabus, lecture and other notes, homework assignments, etc.
- ▶ Classes: ARC 207, Monday and Thursday, 10:20 (sharp!) - 11:40
- ▶ Homework: there will be one or two projects, and homework assignments every week or so. Due dates to be discussed.
- Exams: a midterm and a final.
- ▶ Office Hour: Tuesdays, 3:30–4:30, in Serin 325.

Course Content

Last term you covered Jackson, Chapters 1—7 We will cover most of chapters 8—16

Everything comes from Maxwell's Equations and the Lorentz Force. We will discuss:

- ▶ EM fields confined: waveguides, cavities, optical fibers
- ▶ Sources of fields: antennas and their radiation, scattering and diffraction
- ▶ Relativity, and relativistic formalism for E&M
- ▶ Relativistic particles
- \blacktriangleright other gauge theories

Physics 504, Spring 2010 Electricity and Magnetism

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

Intro Course Info Interface Power Loss

TEM, TE, and TM Modes TEM modes Example

Shapiro

Course Info

Physics 504, Spring 2010 Electricity

Magnetism

Shapiro

Maxwell's Equations

 $\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho_{\rm all}$ Gauss for E $\vec{\nabla} \cdot \vec{B} = 0$ Gauss for B $\vec{\nabla} \times \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial \vec{d}} = \mu_0 \vec{J}_{\rm all}$ Ampère (+M Ampère (+Max) $\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$ Faraday

plus the Lorentz force:

 $\vec{F} = a(\vec{E} + \vec{v} \times \vec{B})$

Physics 504, Spring 2010 Electricity

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

Shapiro

Course Info

4 m > 4 m >

In "Ponderable Media"

In the last slide, $\rho_{\rm all}$ and $\vec{J}_{\rm all}$ represent all charges, both "free" and "induced".

Separate "free" from "induced":

- ▶ For the electric field
 - $ightharpoonup \vec{E}$ called electric field
 - \blacktriangleright \vec{P} called $electric\ polarization$ is induced field
 - $ightharpoonup \vec{D}$ called electric displacement is field of "free charges"
 - $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$
- \blacktriangleright For the magnetic field
 - $ightharpoonup \vec{B}$ called magnetic induction (unfortunately)
 - $ightharpoonup \vec{M}$ called magnetization is the induced field
 - ► \vec{H} called magnetic field ► $\vec{H} = \frac{1}{\mu_0} \vec{B} \vec{M}$

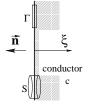
Then the two Maxwell equations with sources, Gauss for \vec{E} and Ampère, get replaced by

$$\vec{\nabla} \cdot \vec{D} = \rho$$

$$\vec{\nabla} \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$$

Interface between conductor and non-conductor

Conductor c: if perfect, no \vec{E} . Surface charge Σ , eddy currents so no \vec{H} inside conductor. Just outside the conductor: Faraday on loop $\Gamma \longrightarrow E_{\parallel} \approx 0$ Gauss on pillbox $S \longrightarrow B_{\perp} \approx 0$



Physics 504, Spring 2010 Electricity Magnetism

Shapiro

Course ... Interface

10 > 10 > 12 > 12 > 2 900

For good (not perfect) conductor, take $\vec{J} = \sigma \vec{E}$ with large conductivity σ . Assume time-dependence $\propto e^{-i\omega t}$ Skin depth ξ , \vec{H} varies rapidly.

$$\vec{\nabla} \times \vec{H}_c = \vec{J} + \frac{\partial \vec{D}}{\partial t} \approx \sigma \vec{E},$$

$$\vec{\nabla} \times \vec{E_c} = -\frac{\partial \vec{B}}{\partial t} = i \omega \mu_c H_c$$

Rapid variation with depth ξ dominates, $\vec{\nabla} = -\hat{n}\frac{\partial}{\partial \xi}$, and

$$\vec{E}_c = \frac{1}{\sigma} \vec{J} = -\frac{1}{\sigma} \hat{n} \times \frac{\partial \vec{H}_c}{\partial \xi}, \qquad \vec{H}_c = \frac{i}{\omega \mu_c} \hat{n} \times \frac{\partial \vec{E}_c}{\partial \xi}$$

$$\vec{H}_c = \frac{i}{\omega \mu_c} \hat{n} \times \frac{\partial \vec{E}_c}{\partial \xi}$$

4 D > 4 D > 4 E > 4 E > E 9 Q O

From $\vec{H}_c = \vec{H}_{\parallel} e^{-\xi/\delta} e^{i\xi/\delta}$.

$$\vec{E_c} = -\frac{1}{\sigma}\hat{n}\times\frac{\partial\vec{H_c}}{\partial\xi} = \sqrt{\frac{\mu_c\omega}{2\sigma}}(1-i)\hat{n}\times\vec{H}_{\parallel}e^{-\xi/\delta}e^{i\xi/\delta},$$

which means, by continuity, that just outside the conductor

$$\vec{E}_{\parallel} = \sqrt{\frac{\mu_c \omega}{2\sigma}} (1 - i) \hat{n} \times \vec{H}_{\parallel}.$$

4 D F 4 D F 4 E F 4 E F E 9940

In terms of surface current

$$\begin{split} \vec{K}_{\text{eff}} &= \int_0^\infty d\xi \, \vec{J}(\xi) = \frac{1}{\delta} \hat{n} \times \vec{H}_{\parallel} \int_0^\infty d\xi \, (1-i) e^{-\xi(1-i)/\delta} \\ &= \hat{n} \times \vec{H}_{\parallel}. \end{split}$$

Thus

$$\frac{dP_{\rm loss}}{dA} = \frac{1}{2\sigma\delta} |\vec{K}_{\rm eff}|^2. \label{eq:loss}$$

 $\frac{1}{\sigma\delta}$ is surface resistance (per unit area) and $\frac{\vec{E}_{||}}{\vec{K}_{\rm off}} = \frac{1-i}{\sigma\delta}$ is the surface impediance Z.

40 + 40 + 42 + 42 + 2 990

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

TEM, TE, an TM Modes TEM modes

Physics 504, Spring 2010 Electricity

Shapiro

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Intro Course Info Interface Power Loss

 $\vec{E}_c = \frac{1}{\sigma} \vec{J} = -\frac{1}{\sigma} \hat{n} \times \frac{\partial \vec{H}_c}{\partial \xi}, \qquad \vec{H}_c = \frac{i}{\omega \mu_c} \hat{n} \times \frac{\partial \vec{E}_c}{\partial \xi}$

$$\begin{split} \hat{n} \times \vec{H}_c &= \frac{i}{\omega \mu_c} \hat{n} \times \left(\hat{n} \times \frac{\partial \vec{E}_c}{\partial \xi} \right) \\ &= -\frac{i}{\sigma \omega \mu_c} \hat{n} \times \left(\hat{n} \times \left[\hat{n} \times \frac{\partial^2 \vec{H}_c}{\partial \xi^2} \right] \right) \\ &= \frac{i}{\sigma \omega \mu_c} \frac{\partial^2}{\partial \xi^2} \left(\hat{n} \times \vec{H}_c \right). \end{split}$$

Simple DEQ, exponential solution, with $\delta = \sqrt{\frac{2}{u \omega \sigma}}$.

$$\vec{H}_c = \vec{H}_{\parallel} e^{-\xi/\delta} e^{i\xi/\delta},$$

 H_{\parallel} is tangential field outside surface of conductor.

How much power is dissipated (per unit area?). 2 ways: 1) Flow of energy into conductor: Energy flow given by $\vec{S} = \vec{E} \times \vec{H}$, for real fields \vec{E} and \vec{H} .

so¹
$$\langle \vec{S} \rangle = \frac{1}{2} \text{Re} \left(\vec{E} \times \vec{H}^* \right)$$

$$\begin{split} \frac{dP_{\rm loss}}{dA} &= -\hat{n} \cdot \langle \vec{S} \rangle \\ &= -\frac{1}{2} \sqrt{\frac{\mu_c \omega}{2\sigma}} \hat{n} \cdot \text{Re} \left[(1-i)(\hat{n} \times \vec{H}_{\parallel}) \times \vec{H}_{\parallel}^* \right] \\ &= \frac{\mu_c \omega \delta}{4} |\vec{H}_{\parallel}|^2 = \frac{1}{2\sigma \delta} |\vec{H}_{\parallel}|^2 \end{split}$$

Method 2, Ohmic heating, power lost per unit volume $\frac{1}{2}\vec{J}\cdot\vec{E}^*=|\vec{J}|^2/2\sigma, |\vec{J}|=\sigma\vec{E}_c=\frac{\sqrt{2}}{\delta}|\vec{H}_{\parallel}|e^{-\xi/\delta},$ the power loss per unit area is

$$\frac{dP_{\text{loss}}}{dA} = \frac{1}{\delta^2 \sigma} |\vec{H}_{\parallel}|^2 \int_0^{\infty} d\xi \, e^{-2\xi/\delta} = \frac{1}{2\delta \sigma} |\vec{H}_{\parallel}|^2.$$

Agrees with method 1.

The $\frac{1}{2}$, Re, and * will be discussed indecture 3. \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Wave Guides

For electromagnetic fields with a fixed geometry of linear materials, fourier transform decouples, and we can work with frequency modes,

$$\vec{E}(\vec{x},t) = \vec{E}(x,y,z) e^{-i\omega t}$$

 $\vec{B}(\vec{x},t) = \vec{B}(x,y,z) e^{-i\omega t}$

Actually the fields are the real parts of these complex

If $\rho = 0$, $\vec{J} = 0$, Maxwell gives

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = i\omega \vec{B}, \qquad \vec{\nabla} \cdot \vec{E} = 0, \qquad \vec{\nabla} \cdot \vec{B} = 0,$$

$$\vec{\nabla} \times \vec{B} = \mu \vec{\nabla} \times \vec{H} = \mu \frac{\partial \vec{D}}{\partial t} = \mu \epsilon \frac{\partial \vec{E}}{\partial t} = -i\omega \mu \epsilon \vec{E}.$$

$$\nabla^2 \vec{E} = -\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) + \vec{\nabla} \left(\vec{\nabla} \cdot \vec{E} \right) = -\vec{\nabla} \times (i\omega \vec{B}) = -\omega^2 \mu \epsilon \vec{E}.$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Shapiro

Power Loss

Physics 504, Spring 2010 Electricity Magnetism

Shapiro

Wave Guides TEM, TE, a TM Modes TEM modes Example

and similarly for \vec{B} , so we get Helmholtz equations

$$(\nabla^2 + \omega^2 \mu \epsilon) \vec{E} = 0, \qquad (\nabla^2 + \omega^2 \mu \epsilon) \vec{B} = 0.$$

Consider a waveguide, a cylinder of arbitrary cross section but uniform in z. Fourier transform in z

$$\vec{E}(x, y, z, t) = \vec{E}(x, y)e^{ikz-i\omega t}$$

 $\vec{B}(x, y, z, t) = \vec{B}(x, y)e^{ikz-i\omega t}$

k can take either sign (and a standing wave is a superposition of $k = \pm |k|$). The Helmholtz equations give

$$\left[\nabla_t^2 + (\mu\epsilon\omega^2 - k^2)\right] \begin{pmatrix} \vec{E}(x,y) \\ \vec{B}(x,y) \end{pmatrix} = 0, \quad \nabla_t^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Intro Course Info Interface Power Loss

Wave Guides

TEM, TE, a TM Modes TEM modes Example

Physics 504, Spring 2010 Electricity

Shapiro

Wave Guides

Physics 504, Spring 2010 Electricity

Magnetism

Shapiro

ntro Course Info Interface Power Loss

TEM, TE, and TM Modes

Decompose longitudinal and transverse

Let

$$ec{E} = E_z \hat{z} + ec{E}_t$$
 with $ec{E}_t \perp \hat{z}$
 $ec{B} = B_z \hat{z} + ec{B}_t$ $ec{B}_t \perp \hat{z}$

$$\begin{split} (\vec{\nabla}\times\vec{E})_z &= (\vec{\nabla}_t\times\vec{E}_t)_z = i\omega B_z, \\ (\vec{\nabla}\times\vec{E})_\perp &= \hat{z}\times\frac{\partial\vec{E}_t}{\partial z} - \hat{z}\times\nabla_t E_z = i\omega\vec{B}_t. \end{split}$$

For any vector \vec{V} , $\hat{z} \times (\hat{z} \times \vec{V}) = -\vec{V} + \hat{z}(\hat{z} \cdot V)$, so for a transverse vector $\hat{z} \times (\hat{z} \times \vec{V}_t) = -\vec{V}_t$. Taking $\hat{z} \times$ last equation,

$$\frac{\partial \vec{E}_t}{\partial z} - \vec{\nabla}_t E_z = -i\omega \hat{z} \times \vec{B}_t. \tag{1}$$

Similarly decomposition of $\vec{\nabla} \times \vec{B} = -i\omega\mu\epsilon\vec{E}$ gives

$$\left(\vec{\nabla}_t \times \vec{B}_t\right)_z = -i\omega\mu\epsilon E_z$$

$$\frac{\partial \vec{B}_t}{\partial z} - \vec{\nabla}_t B_z = i\omega\mu\epsilon \hat{z} \times \vec{E}_t.$$
(2)

Divergencelessness:

$$\vec{\nabla}_t \cdot \vec{E}_t + \frac{\partial E_z}{\partial z} = 0, \qquad \vec{\nabla}_t \cdot \vec{B}_t + \frac{\partial B_z}{\partial z} = 0.$$

Equations (1) and (2), with the fourier transform in z, give

$$ik\vec{E}_t + i\omega\hat{z} \times \vec{B}_t = \vec{\nabla}_t E_z \tag{3}$$

$$ik\vec{B}_t - i\omega\mu\epsilon\hat{z} \times \vec{E}_t = \vec{\nabla}_t B_z \tag{4}$$

Solving 4 for \vec{B}_t and plugging into 3, and then the reverse for \vec{E}_t , give

$$E_t = i \frac{k \vec{\nabla}_t E_z - \omega \hat{z} \times \vec{\nabla}_t B_z}{\omega^2 \mu \epsilon - k^2}$$
 (5)

$$B_t = i \frac{k \vec{\nabla}_t B_z + \omega \mu \epsilon \hat{z} \times \vec{\nabla}_t E_z}{\omega^2 \mu \epsilon - k^2}$$
 (6)

Unless $k^2 = k_0^2 := \mu \epsilon \omega^2$, E_z and B_z determine the rest.

We have seen that E_z and B_z largely determine the fields. and these satisfy the two-dimensional Helmholtz equation

$$(\nabla_t^2 + \gamma^2) \psi = 0$$
 with $\gamma^2 = \mu \epsilon \omega^2 - k^2$ (7)

If the walls of the waveguide are very good conductors, we may impose the perfect conductor conditions $E_{\parallel} \approx 0$ and $B_{\perp} \approx 0$ on the boundary S of the two-dimensional cross section. E_z is parallel to the boundary so $E_z|_S = 0$. Also the component of \vec{E}_t parallel to the boundary vanishes at the wall, so \vec{E}_t is in the $\pm \hat{n}$ direction. Then from the \hat{n} component of (2) (normal to the boundary)

$$\frac{\partial \hat{n} \cdot \vec{B}_t}{\partial z} - \hat{n} \cdot \vec{\nabla}_t B_z = i \omega \mu \epsilon \hat{n} \cdot \left(\hat{z} \times \vec{E}_t \right) \Longrightarrow 0 - \frac{\partial B_z}{\partial n} = 0,$$

where $\partial/\partial n$ is the derivative normal to the surface. So we have Dirichlet conditions on E_z and Neumann conditions for B_{\sim} .

4 D > 4 B > 4 B > 4 B > B = 990

In general, nonzero solutions exist only for discrete values of γ , and those values are generally different for Dirichlet and for Neumann. So we need to consider

- ▶ TEM modes, with $E_z(x,y) = B_z(x,y) \equiv 0$. That is, there are no longitudinal fields, both electric (E) and magnetic (M) fields are purely transverse to the direction z of propagation.
- ▶ TE modes, $E_z(x,y) \equiv 0$, and the transverse fields are determined by the gradiant of $B_z = \psi$, a solution of (7) with Neumann conditions.
- ▶ TM modes, $B_z(x,y) \equiv 0$, and the transverse fields are determined by $E_z = \psi$, a solution of (7) with zero boundary conditions.

TEM modes

With $E_z(x,y) = B_z(x,y) \equiv 0$, (5) and (6) \Longrightarrow everything vanishes or the denominator vanishes,

$$k = \pm k_0$$
 with $k_0 = \sqrt{\mu \epsilon} \omega$

Wave travels $\parallel z$ with speed $1/\sqrt{\mu\epsilon}$, same as for infinite medium. No dispersion. $\vec{\nabla}_t \cdot \vec{E}_t = 0$ and $\vec{\nabla}_t \times \vec{E}_t = i\omega B_z = 0$, so $\exists \Phi \ni \vec{E}_t = -\vec{\nabla}_t \Phi$ (though Φ might not be single valued) and $\nabla^2 \Phi = 0$. As $\vec{E}_{\parallel}|_{S} = 0$, $\Phi = \text{constant on each boundary.}$ If cross section simply connected, $\Phi = \text{constant}, \vec{E} = 0$ No TEM modes on simply connected cylinder

Yes TEM modes on coaxial cable, or two parallel wires.

Physics 504, Spring 2010 Electricity and Magnetism Shapiro

Intro Course Info Interface Power Loss

Wave Guides

Shapiro

Intro Course Info Interface Power Loss

Physics 504, Spring 2010 Electricity

Magnetism Shapiro

Course Info Interface Power Loss Wave Guides

TE and TM modes

Equations (5) and (6) simplify for

- TM modes, $B_z = 0$, $\gamma^2 \vec{E}_t = ik \vec{\nabla}_t E_z$, $\gamma^2 \vec{B}_t = i\mu\epsilon\omega\hat{z} \times \vec{\nabla}_t E_z$, so $\vec{H}_t = \epsilon\omega k^{-1}\hat{z} \times \vec{E}_t$.
- ► TE modes, $E_z = 0$, $\gamma^2 \vec{B}_t = ik \vec{\nabla}_t B_z$, $\gamma^2 \vec{E}_t = -i\omega \hat{z} \times \vec{\nabla}_t B_z$, so

$$\vec{E}_t = -\omega \hat{z} \times \vec{B}_t / k \Longrightarrow_{\hat{z} \times} H_t = k \hat{z} \times E_t / \mu \omega.$$

In either case, $\vec{H}_t = \frac{1}{Z}\hat{z} \times \vec{E}_t$, with

$$Z = \begin{cases} k/\epsilon \omega = (k/k_0)\sqrt{\mu/\epsilon} & \text{TM} \\ \mu \omega/k = (k_0/k)\sqrt{\mu/\epsilon} & \text{TE} \end{cases}$$

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Intro Course Info Interface Power Loss

TEM, TE, and TM Modes TEM modes

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

ntro Course Info Interface Power Loss

Wave Guides
TEM, TE, and
TM Modes
TEM modes
Example

To Summarize

Solutions given by $\psi(x,y)$, with $(\nabla_t^2 + \gamma^2) \psi = 0$, $\gamma^2 = \mu \epsilon \omega^2 - k^2$, by

 $E_z = \psi e^{ikz - i\omega t}, \quad \vec{E}_t = ik\gamma^{-2} \vec{\nabla}_t \psi e^{ikz - i\omega t}$ $H_z = \psi e^{ikz - i\omega t}, \quad \vec{H}_t = ik\gamma^{-2} \vec{\nabla}_t \psi e^{ikz - i\omega t}$ TE: with $\hat{n} \cdot \vec{\nabla}_t \psi|_{\Gamma} = 0$

By looking at $0 = \int_A \psi^* (\nabla_t^2 + \gamma^2) \psi$ we can show $\gamma^2 \ge 0$. There are solutions for **discrete** values γ_{λ} , so only certain wave numbers k_{λ} for a given frequency can propagate:

$$k_{\lambda}^2 = \mu \epsilon \omega^2 - \gamma_{\lambda}^2$$

and only frequencies $\omega > \omega_{\lambda} := \gamma_{\lambda}/\sqrt{\mu\epsilon}$ can propagate, and $k_{\lambda} < \sqrt{\mu \epsilon} \omega$, the infinite medium wavenumber. Phase velocity $v_p = \omega/k_\lambda$ is greater than in the infinite medium.

Example: Circular Wave Guide

Jackson does rectangle. You should too. Needed to do homework.

We will consider a circular pipe of (inner) radius r. Of course we should use polar coordinates ρ, ϕ , with

$$\nabla_t^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}, \qquad \text{try} \quad \psi(\rho, \phi) = R(\rho) \Phi(\phi),$$

$$\begin{split} \left(\nabla_t^2 + \gamma^2\right) \psi &= \\ \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial R}{\partial \rho} + \gamma^2 R(\rho)\right) \Phi(\phi) + \frac{1}{\rho^2} R(\rho) \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} &= 0. \end{split}$$

Divide by $R(\rho)\Phi(\phi)$ and multiply by ρ^2 :

$$\begin{split} \frac{1}{R(\rho)} \left(\rho \frac{\partial}{\partial \rho} \rho \frac{\partial R}{\partial \rho} + \gamma^2 \rho^2 R(\rho) \right) \\ + \frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} &= 0. \end{split}$$

Example: Circular Wave Guide

Jackson does rectangle. You should too. Needed to do homework.

We will consider a circular pipe of (inner) radius r. Of course we should use polar coordinates ρ, ϕ , with

$$\nabla_t^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}, \quad \text{try} \quad \psi(\rho, \phi) = R(\rho) \Phi(\phi),$$

$$\begin{split} \left(\nabla_t^2 + \gamma^2\right) \psi &= \\ \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial R}{\partial \rho} + \gamma^2 R(\rho)\right) \Phi(\phi) + \frac{1}{\rho^2} R(\rho) \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} &= 0. \end{split}$$

Divide by $R(\rho)\Phi(\phi)$ and multiply by ρ^2 :

$$\frac{1}{R(\rho)} \left(\rho \frac{\partial}{\partial \rho} \rho \frac{\partial R}{\partial \rho} + \gamma^2 \rho^2 R(\rho) \right) = C$$

$$\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = -C.$$

Solving it

 Φ first:

$$\frac{\partial^2 \Phi(\phi)}{\partial \phi^2} + C \Phi(\phi) = 0$$

$$\Phi(\phi) = e^{\pm i\sqrt{C}\phi}$$
. Periodicity $\Longrightarrow \sqrt{C} = m \in \mathbb{Z}$.

Now $R(\rho)$:

$$\left(\rho\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho}+\gamma^2\rho^2-m^2\right)R(\rho)=0$$

Bessel equation, solutions regular at origin are

$$R(\rho) \propto J_m(\gamma \rho)$$
, so $\psi(\rho, \phi) = \sum_{m,n} A_{m,n} J_m(\gamma_{mn} \rho) e^{im\phi}$.

 γ_{mn} is determined by boundary conditions...

Physics 504, Spring 2010 Electricity Magnetism

Shapiro

ntro Course Info Interface Power Loss TEM, TE, and TM Modes TEM mo Example

Boundary conditions:

For TM, $\psi(r,\phi) = 0 \Longrightarrow J_m(\gamma r) = 0$, so $\gamma_{mn}^{\text{TM}} = x_{mn}/r$ where x_{mn} is the n'th value of x > 0 for which $J_m(x) = 0$, given on page 114.

For TE, $\hat{n} \cdot \vec{\nabla}_t \psi(r, \phi) = 0 \Longrightarrow \frac{dJ_m}{dr}(\gamma r) = 0$, so $\gamma_{mn}^{\text{TM}} = x_{mn}'/r$ where x_{mn}' is the n'th value of x > 0 for which $dJ_m(x)/dx = 0$, given on page 370.

Thus the lowest cutoff frequency is the m=1 TE mode, with $x'_{11} = 1.841$ while the lowest TM mode or circularly symmetric mode has $x_{01} = 2.405$.

For a waveguide 5 cm in diameter, with air or vacuum inside, the cutoff frequencies are $f = \frac{\omega}{2\pi} = 3.5$ GHz for the lowest TE and 4.6 GHz for the lowest TM modes.

Physics 504, Spring 2010 Electricity and Magnetism

Shapiro

Intro Course Info Interface Power Loss

Intro Course Info Interface Power Loss Wave Guides TEM, TE, an TM Modes TEM modes Example

Physics 504, Spring 2010 Electricity

and Magnetism

Shapiro

Physics 504, Spring 2010 Electricity Magnetism

Shapiro

Course Info Interface Power Loss Wave Guide TEM, TE, as TM Modes TEM mode