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» Instructor:

» Joel Shapiro
» Serin 325
» 5-5500 X 3886, shapiro@physics

» Book: Jackson: Classical Electrodynamics (3rd Ed.)

» Web home page:
www.physics.rutgers.edu/grad/504
contains general info, syllabus, lecture and other
notes, homework assignments, etc.

» Classes: ARC 207, Monday and Thursday,
10:20 (sharp!) - 11:40

» Homework: there will be one or two projects, and
homework assignments every week or so. Due dates
to be discussed.

Shapiro

Course Info

» Exams: a midterm and a final.
» Office Hour: Tuesdays, 3:30-4:30, in Serin 325.
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Last term you covered Jackson, Chapters 1—7 Shapiro
We will cover most of chapters 8—16

Course Info

Everything comes from Maxwell’s Equations and the
Lorentz Force. We will discuss:

» EM fields confined: waveguides, cavities, optical
fibers

» Sources of fields: antennas and their radiation,
scattering and diffraction

» Relativity, and relativistic formalism for E&M
» Relativistic particles

» other gauge theories
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- = 1
V-E = —p Gauss for E
60 Course Info
V-B = 0 Gauss for B
- - 10E .
V x B — 25 = poJyn  Ampere (+Max)
c
. . 9B
VxE+ o = 0 Faraday

plus the Lorentz force:

F=q(E+7xB)



In “Ponderable Media” Physics 504,

Spring 2010

In the last slide, p,j; and J;H represent all charges, both i
“free” and “induced”. BRI
Separate “free” from “induced”: Shapiro
» For the electric field
» FE called electric field Course Info

» P called electric polarization is induced field
» D called electric displacement is field of “free charges
» D=¢FE + P
» For the magnetic field
» B called magnetic induction (unfortunately)
M called magnetization is the induced field
» H called magnetic field
» H=LB-M
Then the two Maxwell equations with sources, Gauss for
E and Ampere, get replaced by

b))

v

VD =
-~ . 0D

H—i =
V x Y

<y



Interface between conductor and

non-conductor

Conductor c: if perfect, no E.
Surface charge ¥, eddy currents
so no H inside conductor.

Just outside the conductor:
Faraday on loop I' — Ej =~ 0
Gauss on pillbox S — B| =0

conductor
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For good (not perfect) conductor, take J = o E with large
conductivity o. Assume time-dependence oc e=*?
Skin depth &, H varies rapidly.

. - - 9D .
VXHC:J+7%UE,
o oB .

V x E, —E:zw,ucH
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2
Simple DEQ), exponential solution, with § = ,
V pewo
H, = ﬁ“efi/éeiﬁ/cs’

H) is tangential field outside surface of conductor.
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From ﬁc = ﬁl‘e_g/éeif/a, Shapiro

ol 1 oH c Hew

A~

Interface

_ = - — VA x Hye—&/01/0
c=—_fx o 20(1 i)h X He /9¢i/d,
which means, by continuity, that just outside the
conductor
., w .
EH = He (1 — Z)’fL X H”

20



How much power is dissipated (per unit area?). 2 ways: e B

) Flow of [ energy into Conductor Energy flow given by et
S=FE x H for real fields E and H. and

Magnetism

so! (S) = sRe (E X H*),

Shapiro
dPloss A J
dA " <S> Power Loss
1 ,ucw
= —5\/ 5 Re [(1—1)(n><H”) x Hi
M.;wé

_ i o2
)" =5 5| 1l
Method 2, Ohmic heatlng, power lost per unit volume

%f E* =1J?/20, |J| = 0E, = §|ﬁ|||e_f/5, the power

loss per unit area is

dPogs L= 2/OO —2¢/6§ L 50
dA 2o HIl” | dee 250 111!

Agrees with method 1.

! The %, Re, and * will be discussed in-lecture 3.
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In terms of surface current

Keff = / dft] *n X H”/ dé’ ]_ — Z) —€£(1-1)/s

— n X H” . Power Loss

Shapiro

Thus
d‘F)IOSS _ 1

- > 2
dA 200 et
E” B 1—12

— is surface resistance (per unit area
od (p ) Keff od
is the surface impediance Z.



Wave Guides

For electromagnetic fields with a fixed geometry of linear
materials, fourier transform decouples, and we can work
with frequency modes,

E@# 1) = E(z,y,2) e ™
7, t

B@1) = Bla,y,z) e

Actually the fields are the real parts of these complex
expressions.
If p =0, J =0, Maxwell gives

exﬁz_%f—wg, G F—0, ©.-B-o,
. @ o
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Physics 504,
Spring 2010

and similarly for B , so we get Helmholtz equations S
Magnetism
(V2 tw ,UE) 0 (v2 +w ,Uf) 0 Shapiro

Consider a waveguide, a cylinder of arbitrary cross section
but uniform in z. Fourier transform in z

‘Wave Guides

E(x,y,z,t) = E(x,y)eikz_m

k can take either sign (and a standing wave is a
superposition of & = £|k|). The Helmholtz equations give

El(x 82 82
[V? + (pew? —kz)] (BE:U,?D =0, V?:= 922 37342



Decompose longitudinal and transverse
Let

E=E4+E . E L1z
_, . = with S
B = BZZ + by Bt 1z
(VX E), = (VixEy),=iwB.,
.- OF, ,
(VxE), = 2x8—t—2thEZ:int.
2
For any vector V, 2 x (£ x V) = =V 4 2(2- V), so for a
transverse vector 2 x (2 x V;) = —V;. Taking Z x last
equation,
OE, = .
a—zt —ViE, = —iw? x B, (1)
Similarly decomposition of VxB= —iwueﬁ gives
(ﬁt X B}) = —iwpuek,
z

— — VB, = iwpez x Et. (2)
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Divergencelessness:

- OF, - = 0B,

Vi- 0z =0, 9z

Equations (1) and (2), with the fourier transform in z,
give

ikEy +iwz x By = V.E, (3)
ikBy —iwpez x By, = VB, (4)

Solving 4 for B, and plugging into 3, and then the reverse
for Ey, give

kVtE —wZ X VtB

E, = )
K w2pe — k2 (5)
kVtB + wpez X Vt
By =
¢ w2pe — k2 (6)

Unless k2 = k% = ,uew2, F., and B, determine the rest.

Physics 504,
Spring 2010
Electricity
and
Magnetism

Shapiro

‘Wave Guides



We have seen that E, and B, largely determine the fields,
and these satisfy the two-dimensional Helmholtz equation

(V% + 72) =0 with 72 = pew? — k2 (7)

If the walls of the waveguide are very good conductors, we
may impose the perfect conductor conditions F) ~ 0 and
B, =~ 0 on the boundary S of the two-dimensional cross
section. F, is parallel to the boundary so E.|¢ = 0. Also
the component of E, parallel to the boundary vanishes at
the wall, so Et is in the £n direction. Then from the n
component of (2) (normal to the boundary)

on - By
0z

0B,
on

—ﬁﬁtBZ:iwueﬁ-(szt):O— —0,
where 0/0n is the derivative normal to the surface. So we

have Dirichlet conditions on F, and Neumann conditions
for B..
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In general, nonzero solutions exist only for discrete values
of v, and those values are generally different for Dirichlet
and for Neumann. So we need to consider

» TEM modes, with E,(z,y) = B,(z,y) = 0. That is,
there are no longitudinal fields, both electric (E) and
magnetic (M) fields are purely transverse to the
direction z of propagation.

» TE modes, E,(z,y) =0, and the transverse fields are
determined by the gradiant of B, = 1, a solution of
(7) with Neumann conditions.

» TM modes, B,(z,y) = 0, and the transverse fields
are determined by E, = 1, a solution of (7) with zero
boundary conditions.
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TEM modes

With E,(z,y) = B.(z,y) =0, (5) and (6) = everything
vanishes or the denominator vanishes,

k = tko with kg = Juew

Wave travels || z with speed 1/,/u€, same as for infinite
medium. No dispersion.

Vi Er=0and V; x E; = iwB, =0, s0 30 3 E; = —V,;®
(though ® might not be single valued) and V2® = 0.

As EII ‘S = 0, ® = constant on each boundary. If cross
section simply connected, ® = constant, E=0

No TEM modes on simply connected cylinder
Yes TEM modes on coaxial cable, or two parallel wires.

Physics 504,
Spring 2010
Electricity
and
Magnetism

Shapiro

TEM modes



TE and TM modes Physics 504,

Spring 2010
Electricity
and
Magnetism

Equations (5) and (6) simplify for Shapiro
» TM modes, B, = O 2Et = zk:Vth, B
2Bt Tpewz X Vt », SO Ht = ewk™ 1% x Fj.
» TE modes, F, = 0 fy?Bt = zk:Vth,
2Et —iwZ X VtBZ, SO

Ey = —w? x Bi/k = H; = k2 x Ei/pw.
zZX

—

In either case, H; = -2 X Et, with

k/ew = (k/ko)\/u/e TM
pw/k = (ko/k)\/u/e TE
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Solutions given by ¢ (z,y), with (Vt2 + 72) =0, Ele(;tr:-‘iic.ity
,72 — ,erz _ k,27 by Magnetism
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TM: E, = weikz—iwt’ Et — Z’kx,y—Qﬁtweikz—iwt
TE: H, = ¢eikz—iwt’ FIt — ik7—26tweikz—iwt

with 7 - Vp =0

TEM modes

By looking at 0 = [, ¢¥* (Vi ++?) ¥ we can show 2 > 0.
There are solutions for discrete values vy, so only certain
wave numbers k) for a given frequency can propagate:

1§ = et = 24,

and only frequencies w > w) := 7, /\/f€ can propagate,
and k) < \/p€w, the infinite medium wavenumber. Phase
velocity v, = w/k) is greater than in the infinite medium.



Example: Circular Wave (Guide s B

Electricity

Jackson does rectangle. You should too. Needed to do ]
homework. Magnetism
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We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates p, ¢, with
10 0 1 02
2
S h oSty d(p,d) = R(p)®(e),
(th + f‘yz) w — Example

2
———p—+7 Rm0¢wrnimma§$)=0

Divide by R(p)®(¢) and multiply by p*:
1 0 OR
——fpgw—f+7p
0

(p)
1 W@)

(¢) 0¢°

= 0.
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We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates p, ¢, with

,_10 0 1 2
t

(V? + 72) w — Example
10 OR 1 ?*®(p)
<p8p a*p +y R(P)) () + ?R(P) 9o 0.
Divide by R(p)®(¢) and multiply by p?:
1 0 OR
0] (pappap +72p23(p)) = C
1 ?0(¢) _ _c

O(¢) 092
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96? +CP(p)=0

O(p) = V0o, Periodicity = vC' = m € Z.

® first:

Now R(p):

Example

9 9 2 2 2
—p—+7p —m* ) R(p) =0
<p 50" op p (p)
Bessel equation, solutions regular at origin are

R(p) < Jm(yp), so v(p,d) = ZAm,nJm('Ymnp)eimqb-

m,n

Ymn is determined by boundary conditions...
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For TM, 1/}(7", ¢) =0= Jm('}/"”) = 07 SO ’}/YTn]\;IL - xmn/r Shapiro
where x,,, is the n’th value of x > 0 for which J,,,(z) =0,

given on page 114.

For TE, n - Vﬂﬁ(r $)=0—= d‘]m (yr) =0, so

Yo = b /T where x . is the wth value of 2 > 0 for

which dJ,,(x)/dx = 0, glven on page 370.

Boundary conditions:

Example

Thus the lowest cutoff frequency is the m = 1 TE mode,
with 2, = 1.841 while the lowest TM mode or circularly
symmetric mode has zg; = 2.405.

For a waveguide 5 cm in diameter, With air or vacuum
inside, the cutoff frequencies are f = & = 3.5 GHz for
the lowest TE and 4.6 GHz for the lowest TM modes.
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