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DIFFERENTIAL FORMS AND ALL THAT
by

H. Zapolsky

We know that a tangent (contravariant) vector may be written as

v = viei (1)

where the ei are some (unit magnitude) basis vectors which live in a space “tangent” to
some curve. The transformation rule for the components of a contravariant vector is:

vk′ =
∂xk′

∂xi
vi (2)

and, in order for v to be an invariant object (i.e., vk′ek′ = viei), the basis vectors must
transform as:

ek′ =
∂xi

∂xk′ ei (3)

These rules are sufficient to enable us to do all the differential geometry which we need
to do, but, even with the Einstein summation convention, they put some strain on the
memory. Is there a way in which we can ease this strain? The answer is, yes! We recall,
from the rules of elementary calculus, that

∂

∂xk′ =
∂xi

∂xk′
∂

∂xi
(4)

which is precisely the way in which the ei transform. We can exploit this by writing any
contravariant vector symbolically as:

v = vi ∂

∂xi
(5)

This notation exhibits an isomorphism between tangent vectors and derivative oper-
ators. Let us take this literally. What does the operator v do to some function, f(x)?

v[f ] = vi ∂f

∂xi
= v · ∇f ≡ df(v) (6)

The last expression is a new bit of notation, which we will exploit in a moment. v[f ]
tells us how the function changes when we move in the direction v a distance 4s, where

(4s)2 = gijv
ivj (7)

Notice that v[f ] ≡ df(v) is just a number (scalar) associated with the function f and
the vector v. We have written the right hand side in a form which suggests that there
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might be an operator df , which maps the contravariant vector v into a scalar. How would
we write df so that it does this?

df =
∂f

∂xi
dxi

will work, because dxi(v) ≡ v[xi] = vj ∂x
i

∂xj
= vi and therefore

df(v) = f,i v
i = v · ∇f (8)

The object df is called a differential form (or 1–form, to be more precise). It is
isomorphic to a covariant vector, with components f,i. Any covariant vector, with arbitrary
components ui can be written as

ũ = ui d̃x
i (9)

From now on we use the tilde notation d̃xi when we are thinking of this object as a 1–form
rather than an ordinary coordinate differential. As we did with ordinary tangent (“con-
travariant”) vectors, we insist that 1–forms (“covariant” vectors) are invariant objects, in
the sense that uk′ d̃x

k′ = uid̃x
i. Since

d̃xk′ =
∂xk′

∂xi
d̃xi,

invariance requires that

uk′ =
∂xi

∂xk′ ui

which is the correct transformation rule for covariant components.

We define the exterior (or “wedge”) product of two 1–forms, ω̃, σ̃ as

ω̃ ∧ σ̃ ≡ 1
2
[ω̃ ⊗ σ̃ − σ̃ ⊗ ω̃] (10)

This is called, for obvious reasons, a 2–form. Clearly

ω̃ ∧ σ̃ = −σ̃ ∧ ω̃

and behaves under coordinate transformations like a doubly covariant, anti-symmetric rank
2 tensor. Since we can write

ω̃ = ωi d̃x
i

σ̃ = σj d̃x
j

it is clear that any 2–form can be written as

ω̃ ∧ σ̃ = ωiσj d̃x
i ∧ d̃xj
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Notice that terms like d̃x1 ∧ d̃x1 do not appear in this expansion because of the anti-
symmetric property of the wedge product. A 3–form would look like

ω̃ ∧ σ̃ ∧ τ̃ ≡ 1
6 [ω̃ ⊗ σ̃ ⊗ τ̃ + σ̃ ⊗ τ̃ ⊗ ω̃

+ τ̃ ⊗ ω̃ ⊗ σ̃ − ω̃ ⊗ τ̃ ⊗ σ̃
− τ̃ ⊗ σ̃ ⊗ ω̃ − σ̃ ⊗ ω̃ ⊗ τ̃ ]

(11)

and it is clear how to extend this to n–forms.

We have seen how to generate a 1–form by differentiating a function (0– form, if you
like). We generalize this notion by defining the exterior derivative, d̃, which operates on
an n–form to generate an n+1– form. For ω̃ = ωi(x)d̃xi, we write

d̃ω̃ ≡ ωi,j d̃x
j ∧ d̃xi = −ωi,j d̃x

i ∧ d̃xj (12)

The ordering is important here. Also notice that, if we blindly applied the Liebniz
rule for the differentiation of products, we would have obtained additional terms of the
form d̃(d̃xi). We assert (by definition) that

d̃(d̃xi) ≡ 0 (13)

If ω̃ = d̃f , we say that it is an exact 1–form. Suppose this is the case; then

ω̃ = f,i d̃x
i

d̃ω̃ = d̃(d̃f) = f,ij d̃x
j ∧ d̃xi =

∑
j<i

[f,ij − f,ji]d̃xj ∧ d̃xi = 0

The next to last expression comes from the anti-symmetry of the wedge product, and the
null result comes from the equality of mixed partial derivatives. We can extend this to
n–forms. If α̃ is a p– form and β̃ is a q–form, then

d̃(α̃ ∧ β̃) ≡ d̃α̃ ∧ β̃ + (−1)p α̃ ∧ d̃β̃ (13)

is a p+q+1–form. The (−1)p comes from commuting the d̃ operator through the p differ-
entials in α̃. For any form (again, from equality of mixed partial derivatives):

d̃(d̃ω̃) = 0 (14)

This is a very compact way of writing an extremely important theorem. Suppose we
write a 1–form, ã, as

ã = aid̃x
i = axd̃x+ ayd̃y + az d̃z

Then
d̃ã = ax,yd̃y ∧ d̃x+ ax,z d̃z ∧ d̃x+ ay,xd̃x ∧ d̃y

+ ay,zd̃z ∧ d̃y + az,xd̃x ∧ d̃z + az,yd̃y ∧ d̃z
= (ay,x − ax,y)d̃x ∧ d̃y + (ax,z − az,x)d̃z ∧ d̃x

+ (az,y − ay,z)d̃y ∧ d̃z
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If we think of the ai as components of an ordinary (covariant) vector, then the “com-
ponents” of d̃a are clearly those of ∇× a. If, in addition, the ai are themselves the
components of a gradient, so that ai = f,i, then

ã = f,i d̃x
i = d̃f

and
d̃ã = d̃(d̃f) = 0⇐⇒ ∇×(∇f) = 0

Let us instead look at a 2–form, which I write in the suggestive fashion:

b̃ = bx d̃y ∧ d̃z + by d̃z ∧ d̃x+ bz d̃x ∧ d̃y (15)

Its exterior derivative is

d̃b̃ = bx,x d̃x ∧ d̃y ∧ d̃z + by,y d̃y ∧ d̃z ∧ d̃x+ bz,z d̃z ∧ d̃x ∧ d̃y
= (bx,x + by,y + bz,z) d̃x ∧ d̃y ∧ d̃z

The one “component” left is clearly ∇ · b where the vector b has components bi. If, in
addition, b = ∇× a, then b̃ is an exact 2– form.

b̃ = d̃ã

ã = axd̃x+ ayd̃y + azd̃z

d̃b̃ = d̃(d̃ã) = 0 ⇐⇒∇ · (∇× a) = 0

(16)

In three dimensions, we can’t go any farther, since (say)

d̃x ∧ (d̃x ∧ d̃y ∧ d̃z) ≡ 0

but it should be clear that in n-dimensions, there will be n–1 identities of the form

∇×∇f = 0
∇ · (∇× a) = 0

...

As we shall see, the charge–current continuity equation,
∂ρ

∂t
+∇ · J = 0 is the remaining

identity in a four–dimensional Minkowski space.

You should not be surprised that there are a set of closely related integral theorems.
They can all be written down in one line!

∫
V

d̃ω =
∮

S

ω̃ (17)
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where the volume of integration can have any dimensionality (up to n), and the surface
which encloses it has one less dimension. This is the generalized Stokes’ theorem. If ω̃ is
a 0–form (ordinary function) then we have:

∫ x2

x1

∇f · dl = f(x2)− f(x1)

where f(x) is any function; this is nothing more than the “fundamental theorem” of
(vector) calculus.

If ω̃ is a 1–form, the generalized Stokes’ theorem gives:
∫

S

(∇× v) · dS =
∮

C

v · dl

where v(x) is any vector field.

If ω̃ is a 2–form, we get:
∫

V

(∇ · v)dV =
∮

S

v · dS

Clearly, in n dimensions, there are n Stokes’ (Gauss’) theorems.

We have seen that the operation of exterior differentiation on forms reproduces all the
important vector derivative operations,∇, ∇·, and∇×. Furthermore, using this formalism,
it is possible to compute the effect of these operations, almost without thinking. These
computations are no more difficult in arbitrary coordinates than they are in Cartesian
coordinates. Recall that

ds2 = gijdx
idxj

is quadratic in the dxi. Any such expression can always be diagonalized and normalized
(recall the normal modes of classical mechanics). For example,

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2

≡ (ω1)2 + (ω2)2 + (ω3)2

with
ω̃1 ≡ d̃r

ω̃2 ≡ rd̃θ

ω̃3 ≡ r sin θd̃φ

(18)

The squares are not to be thought of as wedge products in the first expression above—we
merely use that notation to define an orthonormal basis of 1–forms. Suppose we want to
calculate the gradient of a function in spherical coordinates. We write

d̃f = f,i d̃x
i ≡ viω̃

i
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and the vi will be the appropriate components of the gradient. Notice that, in general, the
ω̃i are not exact 1– forms; i.e., rd̃θ 6= d̃(anything). Let’s see how this works in spherical
coordinates.

d̃f = f,r d̃r + f,θ d̃θ + f,φ d̃φ

= f,r ω̃
1 +

1
r
f,θ ω̃

2 +
1

r sin θ
f,φ ω̃

3

or, by inspection,

(∇f)r =
∂f

∂r

(∇f)θ =
1
r

∂f

∂θ

(∇f)φ =
1

r sin θ
∂f

∂φ

We recall that d̃(1–form) gives the curl and d̃(2–form) gives the divergence. Suppose
we have a vector with components ar, aθ, and aφ where r̂, θ̂, and φ̂ are a right handed
triad of unit vectors—the usual ones for spherical coordinates. The corresponding 1–form
is

ã = ar ω̃
1 + aθ ω̃

2 + aφ ω̃
3

and
d̃ã = ar,θ d̃θ ∧ ω̃1 + ar,φ d̃φ ∧ ω̃1 + aθ,r d̃r ∧ ω̃2

+ aθ,φ d̃φ ∧ ω̃2 + aφ,r d̃r ∧ ω̃3 + aφ,θ d̃θ ∧ ω̃3

+ ar d̃ω
1 + aθ d̃ω

2 + aφ d̃ω
3

where, from Eq.(18),
d̃r = ω̃1

d̃θ =
ω̃2

r

d̃φ =
ω̃3

r sin θ
d̃ω̃1 = d̃(d̃r) = 0

d̃ω̃2 = d̃r ∧ d̃θ =
ω̃1 ∧ ω̃2

r

d̃ω̃3 = sin θ d̃r ∧ d̃φ+ r cos θ d̃θ ∧ d̃φ

=
ω̃1 ∧ ω̃3

r
+
cotθ ω̃2 ∧ ω̃3

r
Grouping terms, we have:

d̃ã =
(
aφ,θ

r
− aθ,φ

r sin θ
+
aφ cot θ

r

)
ω̃2 ∧ ω̃3

+
( ar,φ

r sin θ
− aφ,r − aφ

r

)
ω̃3 ∧ ω̃1

+
(
aθ,r − ar,θ

r
+
aθ

r

)
ω̃1 ∧ ω̃2

(19)
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The coefficients of ω̃2 ∧ ω̃3, ω̃3 ∧ ω̃1, and ω̃1∧ ω̃2 in the above expression are the respective
r̂, θ̂, and φ̂ components of ∇× a. (Note the cyclic ordering of the basis 1–forms in the
wedge products). You will not be able to appreciate the value of using differential forms
to make this computation unless you have tried to do it in the more standard way!

There are two more operations on forms which we wish to introduce. The first of these
is the norm operation, which is related to taking the modulus of a tensor in the standard
notation. Any p–form can be written as:

ã = a|i1i2...ip| ω̃i1 ∧ ω̃i2 ∧ · · · ∧ ω̃ip (20)

where the vertical bars mean that i1 < i2 < · · · < ip. For example,

ã = a12 ω̃
1 ∧ ω̃2 + a21 ω̃

2 ∧ ω̃1 = (a12 − a21) ω̃1 ∧ ω̃2 ≡ a|12| ω̃1 ∧ ω̃2

The square of the norm of ã is then

‖ã‖2 ≡ a|i1i2...ip| ai1i2...ip (20)

where the ai1i2...ip are the fully contravariant components of the rank p covariant tensor
represented by the p–form ã.

The dual of a p–form is an (n–p) form, with (almost) the same components. It is
defined by the “star” operation:

(∗ã)k1k2...kn−p
≡ a|i1i2...ip|εi1i2...ipk1k2...kn−p

(21)

where εi1i2...in
is the fully anti-symmetric Levi-Civita symbol in n dimensions. In E3, this

is particularly simple. Suppose we have a 1–form:

ã = a1 d̃x+ a2 d̃y + a3 d̃z

then,
∗ã = a1 d̃y ∧ d̃z + a2 d̃z ∧ d̃x+ a3 d̃x ∧ d̃y

A little more care is necessary in M4, since there are sign changes in going from
covariant to contravariant components. Thus, if

ã = a0 d̃t+ a1 d̃x+ a2 d̃y + a3 d̃z

we get

∗ã = −a0 d̃x ∧ d̃y ∧ d̃z − a1 d̃y ∧ d̃z ∧ d̃t+ a2 d̃z ∧ d̃t ∧ d̃x− a3 d̃t ∧ d̃x ∧ d̃y
(where we have adopted the convention that ε0123 = −ε0123 = +1). Look at the third
term. a2 = −a2, but ε2310 = −ε1230 = +ε0123 = −1, so things are a bit tricky. As another
example, suppose we have a 2–form in M4:

σ̃ ≡ σtr d̃t ∧ d̃r = σtrω̃
0 ∧ ω̃1

∗σ̃ = σtrε0123 ω̃
2 ∧ ω̃3 = σtr r

2 sin θ d̃θ ∧ d̃φ
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All of E&M can now be written in a few lines. The differential form which corresponds
to the 4–potential, Aµ, is

Ã = φ d̃t− Ax d̃x− Ay d̃y −Az d̃z (21)

(Notice that we must use the covariant components of A to define the 1–form). There is
then a natural 2–form which reproduces the doubly covariant components of the electro-
magnetic field tensor;

F̃ ≡ d̃A = Ex d̃t ∧ d̃x+ Ey d̃t ∧ d̃y +Ez d̃t ∧ d̃z
−Bx d̃y ∧ d̃z −By d̃z ∧ d̃x−Bz d̃x ∧ d̃y

(22)

Gauge transformations are given by Ã′ = Ã + d̃ψ, where ψ is an arbitrary function;
ψ = ψ(x, t). This leaves the field invariant, since d̃(d̃ψ) ≡ 0. Two of the Maxwell equations
are given by:

d̃F = d̃(d̃Ã) ≡ 0
m

∇ ·B = 0

∇×E = −∂B
∂t

(23)

The remaining two equations relate the fields to the sources, so we must use the
charge-current 1–form:

J̃ ≡ ρ d̃t− Jx d̃x− Jy d̃y − Jz d̃z (24)

Now,

∗J̃ = −ρ d̃x ∧ d̃y ∧ d̃z + Jx d̃t ∧ d̃y ∧ d̃z − Jy d̃t ∧ d̃x ∧ d̃z + Jz d̃t ∧ d̃x ∧ d̃y
and

d̃∗J̃ = −
(
∂ρ

∂t
+∇ · J

)
d̃t ∧ d̃x ∧ d̃y ∧ d̃z ≡ 0 (25)

from charge conservation. This suggests that ∗J̃ is an exact 3–form (but, see the addendum
to these notes). Since d̃(d̃F ) = d̃(d̃(d̃A)) ≡ 0, the only other exact 3–form available to us
is d̃∗d̃F̃ , so we conclude that:

d̃∗d̃F̃ ∝∗ J̃ (26)

With the constant of proportionality in Eq.(26) taken as −4π (gaussian units), the above
equation is equivalent to

∇ ·E = 4πρ

∇×B = 4πJ +
∂E
∂t

(27)

In this notation, the field invariants are

‖F̃‖2 = B2 − E2

and
(F̃ )αβ(∗F̃ )αβ = 2E.B

(28)
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In the above, we have set c=1. In order to reclaim the proper factors of c, you need only
let t −→ ct, J −→ J/c, and A −→ A/c after the form computations are performed.

You may feel that all of this is somewhat artificial, and not worth the effort just to
gain some additional compactness in the way we write our equations. If that were the only
reason for introducing differential forms, I would agree with you. But, by freeing us from
coordinate bases (remember, the ω̃i are not, in general, derivatives of coordinates), the
formalism makes it possible to compute in a much more efficient fashion. In particular,
by avoiding the general tensor transformation formulae, it assures that we will never make
a lengthy calculation of some tensor component that turns out to be zero. (Review the
computation of ∇× a in spherical polar coordinates, given above). As another example of
this convenience, consider the Lorentz transformation of the E and B fields from a frame
x, t to a frame x′, t′ with

x = γ(x′ + βt′)
t = γ(t′ + βx′)
y = y′

z = z′

Rewriting Eq.(22) in terms of the primed coordinate differentials,

F̃ = γ2Ex(d̃t′ + βd̃x′) ∧ (d̃x′ + βd̃t′)

+ γ(d̃t′ + βd̃x′)(Ey d̃y
′ + Ez d̃z

′)

−Bx d̃y
′ ∧ d̃z′ − γBy d̃z

′ ∧ (d̃x′ + βd̃t′)

− γBz (d̃x′ + βd̃t′) ∧ d̃y′

= γ2(1− β2)Ex d̃t
′ ∧ d̃x′ + γ(Ey − βBz) d̃t′ ∧ d̃y′

+ γ(Ez + βBy) d̃t′ ∧ d̃z′ −Bx d̃y
′ ∧ d̃z′

− γ(By + βEz) d̃z′ ∧ d̃x′ − γ(Bz − βEy) d̃x′ ∧ d̃y′

and we can immediately read off the components of E′ and B′ according to Eq.(22). Since
γ2(1− β2) ≡ 1 we have

Ex′ = Ex

Ey′ = γ(Ey − βBz)
Ez′ = γ(Ez + βBy)
Bx′ = Bx

By′ = γ(By + βEz)
Bz′ = γ(Bz − βEy)

In short, this elegant formalism of differential forms, invented over fifty years ago
by Élie Cartan, is beginning to make its impact in Physics. In fact, in some areas like
General Relativity, it makes possible computations by hand which would never otherwise
be attempted by a sensible physicist— even a theorist! For those of you who wish to pursue
this subject further, I recommend the following references:
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“Gravitation”, Misner, Thorne, and Wheeler, (W. H. Freeman, 1973)
“Differential Forms”, H. Flanders, (Academic Press, 1963)
“Differential Geometry”, B. O’Neill, (Academic Press, 1966)

Addendum to “Forms and All That”

In “deriving” Maxwell’s source equations, I have argued that, since d̃∗J̃ = 0 (from
charge conservation), ∗J = d̃ω̃, where ω̃ is a 2–form, and the only non-trivial 2–form we
have left is ∗F̃ . In other words, I have implicitly assumed that

d̃σ̃ = 0 =⇒ σ̃ = d̃ω̃

Now, the converse of this theorem is always true (it involves nothing more than the
equality of mixed partial derivatives), but the theorem itself is only true for spaces of
“simple” topology, where closed curves (or surfaces, etc.) can be continuously deformed
to a point. To see how this works, look at the 1–form

ω̃ ≡ − y

r2
d̃x+

x

r2
d̃y with r2 ≡ x2 + y2

For this example d̃ω̃ = 0 and we might be tempted to write

ω̃ = d̃η with η = arctan
y

x

which works “almost” everywhere, although it is ill defined at x = y = 0. A little more care
is needed here. In the first place, our 1– form is singular at the origin, so, in order to be on
the safe side, we should exclude that point from our space. This changes the topology of
the space, since any closed curve which surrounds the origin can no longer be continuously
contracted to a point. (An alternative way of saying this is that a curve connecting
two points in our space cannot be continuously deformed into any other arbitrary curve
connecting the same two points; it can only be deformed into another curve which lies on
the “same side” of the singularity). This is the underlying reason for the failure of our
“theorem” above. We can restore a simple topology, however, by exluding not only the
origin, but also the positive x axis. Now we are forbidden from drawing closed curves which
circle the origin. (If this sounds reminiscent of the theory of complex variables, I assure
you that it is intimately connected!). Now the arc-tangent is well defined everywhere in
our “manifold”, and things work smoothly.

This is all very relevant to the magnetic monopole problem. We have “derived” the
Maxwell theory for a simply connected space-time. In such a space-time,

∇ ·B = 0 =⇒B = ∇×A

and∮
S

B · dS = 0
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If we place a monopole at the origin, (say), we should probably exclude that point, but once
we do so, we cannot contract closed surfaces which surround it to a point. We could also
decide to exclude a line running from the origin to infinity, which would then prevent us
from drawing such surfaces. Suppose we take a straight line going through the south–pole.
Now we can write for our vector potential,

Aθ = Ar = 0

Aφ =
g

r sin θ
(1− cos θ)

B = ∇×A =
g

r2
r̂

If we now take a surface which almost surrounds the monopole, but with the south–pole
excluded, we get ∫

S

B · dS = 4πg

This surface has a one-dimensional boundary, Γ, which is an infinitesimal circle surrounding
the exluded south– pole. From the generalized Stokes’ theorem, we expect that

∫
S

B · dS =
∮

Γ

A · dl

and, since the radius of the circle is r sin θ, we have, explicitly,
∮

Γ

A · dl =
g

r sin θ
(1− cos θ) · 2πr sin θ → 4πg as θ → π

The “Dirac string” is nothing more than our exluded line, and we see that the theory
can accomodate monopoles if we merely make a slight change in the topology of space-time.
The theory still remains deeply geometrical in character, which is the prime motivation
for introducing monopoles in this particular way.

In technical terms, we have said that if ω̃ = d̃σ̃, then ω̃ is an exact form. We also
say that if d̃ω̃ = 0 it is a closed form. While it is true that all exact forms are closed, we
have seen that it is not always true that all closed forms are exact. When we are dealing
with non-simply connected topologies, they won’t be, unless we fiddle a little bit. The
formal analysis of such topologies involves a branch of mathematics known as “homology
theory”, and it has found some interesting recent applications in both condensed matter
theory (dislocations in ordered media) and particle theory (superstrings). The interested
reader may wish to refer to:

“Topology and Geometry for Physicists”, C. Nash and S. Sen, (Academic Press, 1983)
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