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Intro to Last Lecture (27) (Dec. 14, 2016)

Last time we discussed parallel transport and the covariant derivative.
We found on vectors (contravariant) and 1-forms ∼ covariant vectors) we
have

(DµV )ρ = ∂µV ρ + Γρ
νµV

ν

(DµA)
ν

= ∂µAν − Γρ
νµAρ.

I should have mentioned that requiring the covariant derivative of a particle’s
4-velocity to be zero along its path,

(

D

Dτ
u

)ν

= uρDρu
ν =

dqρ

dτ

[

∂uν

∂xρ
+ Γν

ρµuµ

]

=
d2qρ

dτ 2
+ Γν

ρµ

dqρ

dτ

dqµ

dτ
= 0

is the geodesic equation.

Today

We will discuss geodesic deviation, which is to say how the vector that
describes two neighboring freely-falling particles changes with time. This
will lead us to the Riemann curvature tensor Rρ

σµν . We will see that the
commutator of two covariant derivatives acting on a vector transforms the
vector by a matrix which is the curvature tensor. This might remind you
of the way the electromagnetic field-strength tensor Fµν = −iq−1[Dµ, Dν],
where Dµ = ∂µ + iqAµ is the gauge covariant derivative in terms of the
electromagnetic vector potential Aµ. It is even closer to the same thing in
non-Abelian gauge theories, where A is a field that takes on values which
are generators of group transformations in the internal symmetry group,
rather than just ordinary vectors1. For general relativity, it is the Lorentz
transformations of the tangent frames (the ξα’s of the vierbeins) which are
the generators.

Next we will ask what happens to conserved currents, both the electro-
magnetic Jµ and the energy-momentum tensor T µν . In the absence of gravity
these are conserved, so in a local inertial frame they should still be conserved,
and more generally as well, providing we use the covariant derivative. For
the electromagnetic current we will see that the

√
g change in the divergence

is just what is required to properly integrate over all space to get the total
charge. But when we do the same for T µν , we find that setting DµT

µν = 0
tells us that dP j/dt is not just an integral of a total divergence but has
an additional term, so the integral of the momentum density given by the
energy-momentum tensor of all the matter2 is not conserved. This is because
the gravitational field does change the momentum of the matter.

1Actually the i on electromagnetism’s A is the generator of a rotation of the complex

quantum wave function ψ, that is, a phase transformation.
2Including the electromagnetic fields.
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As the current density is given by the divergence of the field-strength in
the absence of gravity,

Jµ = ∂νF
µν = ∂ν∂

νAµ − ∂ν∂
µAν = Aν,µ

,ν − Aµ,ν
,ν

we might think the equivalence principle should say Jµ = DνF
µν = Dν(D

νAµ−
DµAν), which is correct. But the flat space expression could have been writ-
ten Jµ = ∂ν∂

νAµ − ∂µ∂νA
ν = Aµ,ν

,ν −Aν ,µ
,ν , we might think the equivalence

principle would say Jµ = DνD
νAµ − DµDνA

ν , but the difference of the two
expressions is DµDνA

ν − DνD
µAν = [Dµ, Dν ]A

ν , which is not zero. The
matrix acting on A is the Ricci tensor Rµν := Rα

µαν . Further contraction
gives the curvature scalar R := R µ

µ .
Now it is very disturbing to think that momentum might not be conserved

— indeed, doesn’t Noether guarantee that translation invariance of the basic
laws requires it? So as we want to insist that the total energy-momentum
tensor T µν be covariantly conserved, we will need to add the contribution of
the gravitational fields. There are only two tensors which we could add to Tµν

which are covariantly conserved, the metric tensor and Gµν := Rµν − 1

2
gµνR.

So if we look for an equation connecting the graviational fields with the
matter, it must be

Gµν + Λgµν = 8πGTµν .

Thus we will have found the Einstein field equations of general relativity.

If time permits, we should also discuss the wave equation for the grav-
itational fields, and in particular the gravitons, which are the analogs of
photons. Counting the numbers of degrees of freedom is tricky, it turns out
there are only two for each wavenumber ~k. We might also discuss how to
derive the Einstein equation from an action by the Euler-Lagrange method.
It turns out that the lagrangian density is very simple:

Lgrav =
1

16πG
R − 1

8πG
Λ,

where G is the Newton’s gravitional constant and Λ is the cosmological con-
stant.

• Last class, Wednesday Dec. 14 at noon, here as usual

• homework #11 is voluntary, will not be collected, and the solution has
been posted.

• final exam Dec. 20 at 8:00 AM in our usual room, Hill 009. I will try
to be more reasonable about the timing, but the exam is three hours.
You may bring 3 pages, 11 × 81

2
inches, with handwritten notes (on

both sides, if you like), but no other materials.


