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Physics 464/511 Lecture G Fall, 2016

1 Infinite Series

We will now review some mathematical techniques which are generally useful
in deriving expressions or approximations to solutions of ordinary differential
equations. Infinite series expansions and complex variables are the basic
tools. We will then turn to special functions. Towards the end of the term
we will return to more general techniques.

An infinite series, written

∞∑

n=1

un, is a formal limit of a sequence of partial

sums si =
i∑

n=1

un. The sequence si converges to S (limi→∞ si = S) if

∀ǫ > 0, ∃N ∋ ∀n > N, |si − S| < ǫ.

A series can converge only if un → 0, but that is not enough. A series is
absolutely convergent if

∑ |un| is convergent.
∑

1/n diverges, but
∑

1/n1.01

converges. There are many tests, increasingly subtle, to find whether or not
a series converges. I will not discuss them unless I need them — you have
seen some of them in your math classes, I assume.

Sometimes the terms in our series will be functions rather than numbers.
Then

∑
un(~r) = S(~r) in some domain means that, for each ~r in that domain,

the sequence of numbers converges.
Sequences of functions can have peculiar properties. For example, the

sequence of functions un(x) =

{
1 for n < x < n + 1,

= 0 otherwise.
,

converges at every point to zero,

lim
n→∞

un(x) = 0, but lim
n→∞

∫
∞

−∞

un(x) = 1.

To enable us to use reasonable mathematics, one defines the more restric-
tive notion of uniform convergence:

sn → S uniformly in D if ∀ǫ > 0, ∃N ∋ ∀n > N, ∀~r ∈ D, |sn(~r) − S(~r)| < ǫ.

Note that this differs form just plain convergence in D,

∀ǫ > 0, ∀~r ∈ D, ∃N ∋ ∀n > N, |sn(~r) − S(~r)| < ǫ,
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because for uniform convergence the N has to be chosen the same for all
points in the domain. Our function above converges on the whole real axis,
but not uniformly.

Uniformly convergent series can be treated, term by term, for integration
and differentiation or discussions of continuity.

The most important series is Taylor’s

f(x) =
∞∑

n=0

(x − a)n

n!

(
d

dx

)n

f(x)

∣
∣
∣
∣
x=a

.

Any infinitely differentiable function can therefore be associated with a Tay-
lor series about any point. Almost always that series will converge to f(x)
for small enough x − a, although there are exceptions.

The expansion of Taylor series in 3-D is

f(~r0 + ~a) =
∞∑

n=0

1

n!

[

~a · ~∇
]n

f(~r)
∣
∣
∣
~r=~r0

.

It is not wise to write this as

f(~r) =
∞∑

n=0

1

n!

[

(~r − ~r0) · ~∇
]n

f(~r)
∣
∣
∣
~r=~r0

because the ~∇’s act only on f , not on the factors ~r − ~r0, while if we wrote
[

(~r − ~r0) · ~∇
]2

we would mean (~r − ~r0) · ~∇
[

(~r − ~r0) · ~∇
]

, which includes a

piece where the first ~∇ acts on the second ~r.
We will now see how power series can provide ways of getting an answer

for a problem unsolvable in closed form.
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1.1 Elliptic Integrals

Let us consider a simple pendulum, for which energy
conservation states

1

2
mv2 − mgL cos θ = −mgL cos θM ,

where θM is the maximum angle reached, and v = Lθ̇.
Thus

θ̇2 =
2g

L
(cos θ − cos θM ) , or

dt

dθ
=

√

L

2g

1√
cos θ − cos θM

.

θ
L

The period is twice the time to go from −θM to θM , or four times the time
to go from 0 to θM :

T = 4

∫ θM

0

dt

dθ
dθ = 4

√

L

2g

∫ θM

0

dθ√
cos θ − cos θM

.

Make the substitution θ → φ with sin θ/2 = sin
θM

2
sin φ,

cos θ = 1 − 2 sin2 θ

2
= 1 − 2 sin2 θM

2
sin2 φ,

cos θM = 1 − 2 sin2 θM

2
,

so
√

cos θ − cos θM =
√

2 sin(θM/2) cosφ.

Also − sin θdθ = −
(
2 sin2(θM/2)

)
(2 cosφ sin φ dφ)

= −2 sin
θ

2
cos

θ

2
dθ

= −2 sin
θM

2
sin φ

√

1 − sin2 θM

2
sin2 φ dθ

so

dθ =
2 cosφ dφ

√

1 − sin2 θM

2
sin2 φ

sin
θM

2
,
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and

T = 4

√

L

g

∫ π/2

0

dφ
√

1 − sin2 θM

2
sin2 φ

.

Define

K(m) =

∫ π/2

0

(
1 − m sin2 φ

)
−1/2

dφ,

called the complete elliptic integral of the first kind. Then the period of the
pendulum is

T = 4

√

L

g
K

(

sin2 θM

2

)

.

Giving this integral a name doesn’t necessarily help us know what it is.
Let us get a power series expansion for K for small m. Using the binomial
theorem

(
1 − m sin2 φ

)
−1/2

=
∞∑

n=0

(−1/2

n

)

(−m)n sin2n φ.

The binomial coefficient

(−1/2

n

)

=
−1

2
×−3

2
× · · ·

(
−n + 1

2

)

n!
=

(2n − 1)!!(−1)n

2n n!
,

where (2n− 1)!! means the product of all the odd integers from 1 to 2n− 1,
(and 0! = (−1)!! = 1).

We also need

∫ π/2

0

sin2n φ dφ =
1

4

∫ 2π

0

sin2n φ dφ.

Let us use sin φ = (2i)−1
(
eiφ − e−iφ

)
. Then

1

4

∫ 2π

0

sin2n φ dφ = 2−2n−2(−1)n

∫ 2π

0

dφ
(
eiφ − e−iφ

)2n

= 2−2n−2
∑

r

∫ 2π

0

(
2n

r

)
(
eiφ

)2n−r
(−1)n−r

(
e−iφ

)r
dφ

= 2−2n−2
∑

r

(−1)r−n

(
2n

r

) ∫ 2π

0

eiφ(2n−2r)dφ
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But

∫ 2π

0

eimφdφ =
1

im
eimφ

∣
∣
2π

0
= 0 for m ∈ Z, m 6= 0,

and is 2π for m = 0, so the only term in the sum which survives is r = n,
and

∫ π/2

0

sin2n φdφ =

(
2n

n

)

2−2n−1π =
(2n)!

n! 2n

π

n! 2n+1
=

(2n − 1)!! π

n! 2n+1
.

Finally

K =

∫ π/2

0

∞∑

n=0

(−1/2

n

)

(−1)nmn sin2n φ dφ =
π

2

∞∑

n=0

[
(2n − 1)!!

2n n!

]2

mn.

We have derived a power series expansion for K(m). The radius of con-
vergence can be found by the ratio test, for

an+1

an
=

[
(2n + 1)!!

(2n − 1)!! (n + 1) 2

]2

m =
(2n + 1)m

2n + 2
→ m

and hence the series converges for m < 1 and diverges for m > 1.

We should have expected this, because
(
1 − m sin2 φ

)
−1/2

develops a sin-
gularity for m > 1 in the range sin2 φ ≤ 1 which is integrated over.

What happened to our feeling learned in elementary courses that the
pendulum was simple? This was based on the small angle approximation
θ ≈ sin θ, or sin(θM/2) small, m small. As m → 0, K → π/2 and T →
2π

√

L/g as it says in elementary textbooks.

The elliptic functions, of which K is one, occur in many different contexts
in physics. Moving the square root in K(m) from the denominator to the
numerator gives the complete elliptic integral of the second kind, discussed in

your homework, E(m) =
∫ π/2

0

√

1 − m sin2 θ dθ. The integral

u(φ) :=

∫ φ

0

dθ
√

1 − m sin2 θ
,

when inverted to give φ(u) gives rise to functions known as

sn(u) = sin(φ)

cn(u) = cos(φ)

dn(u) =

√

1 − m sin2 φ
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and many other combinations These are called the Jacobi elliptic functions,
and are characterized by being analytic functions of a complex variable u,
which are periodic under u → u + 4K and also under u → u + 4iK ′. They
have a simple pole in each unit cell.

Related to these are the Jacobi Theta functions ϑi, for i = 1, 2, 3, 4,
which arise in solving electrostatics problems by the method of images. I
first discovered them in work on a model of elementary particles in which
each particle is a piece of string!

1.2 Generating functions, Bernoulli

One use of a power series is a concept called a generating function G(t, z),
which can be expanded in a power series in t. Thus

G(t, z) =
∞∑

n=0

Pn(z)tn

for an infinite set of functions Pn(z). An example we shall investigate later

is G = (1 − 2tz + t2)
−1/2

, where Pn(z) is the “n’th Legendre polynomial”.
Right now we will start with a generating function for a set of numbers,
rather than functions,

G(t) =
t

et − 1
=

∞∑

n=0

Bn
tn

n!
.

Bn are called the Bernoulli numbers. They arise in power series expansions
of trigonometric functions, in integration techniques, and are related to the
Riemann zeta function.

From
t

et − 1
=

∞∑

n=0

Bn
tn

n!
we see

t = (et − 1)

∞∑

n=0

Bn
tn

n!
=

∞∑

m=1

tm

m!

∞∑

n=0

Bn
tn

n!
.

Equating terms of the same power of t, B0 = 1 and from tp+1,

p
∑

n=0

1

n!
Bn

1

(p−n+1)!
= 0.
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This can be used recursively

Bp = −(p!)

p−1
∑

m=0

Bm

m!(p−m+1)!
,

so B1 = −(1!)
B0

0! 2!
= −1

2
, B2 = −2!

(
B0

0! 3!
+

B1

1! 2!

)

=
1

6
, etc..

If we set t = 2ix,
2ix

e2ix − 1
=

∞∑

m=0

Bm
(2x)m

m!
im. Subtract 2ixB1:

2ix

e2ix − 1
+ ix =

∞∑

m6=1

m=0

Bm
(2x)m

m!
im

= ix

(
e2ix + 1

e2ix − 1

)

= ix
eix + e−ix

eix − e−ix
= x cot x.

But x cot x is an even function of x, so all the Bm for odd m on the right
must be zero. Thus

B2n+1 = 0 except B1 = −1/2

x cot x =

∞∑

n=0

B2n
(2x)2n(−1)n

(2n)!
.

The Bernoulli numbers are connected to the Riemann zeta function

ζ(x) :=
∞∑

p=1

p−x, x > 1.

The connection is

B2n = −(−1)n 2 (2n)!

(2π)2n
ζ(2n). (1)

We can generalize the Bernoulli numbers into Bernoulli functions, by
using the generating function

tets

et − 1
=

∞∑

n=0

Bn(s)
tn

n!
.

Clearly when s = 0 we have just the Bernoulli numbers Bn = Bn(0). In
expanding the exponential in powers of t on the left hand side, the stuff from
ets has one power of s for each power of t, but powers of t from expanding
the denominator have no powers of s. Therefore
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Bn(s) is a polynomial of degree n.

Differentiating with respect to s,

t2ets

et − 1
=

∞∑

n=0

B′

n(s)
tn

n!

=

∞∑

r=0

Br(s)
tr+1

r!
=⇒ B′

n(s) = nBn−1(s).

Now let s = 1 − u.

∑

n

Bn(u)
tn

n!
=

tet−ts

et − 1
=

(−t)e(−t)s

e(−t) − 1
=

∑

n

Bn(s)
(−t)n

n!

or Bn(1 − s) = (−1)nBn(s).

A major application of Bernoulli polynomials is in developing the Euler-
Maclaurin integration formula. When integrations cannot be done in closed
form, one often seeks expansions of
some type or another. For numer-
ical integration. one always uses a
finite number of values of the argu-
ment of the function. If these values
are evenly spaced, one method is to
use the trapezoid rule

x0 x0+ x0+ x0+ 3h h h2

∫

f(x) dx ∼ h

[
1

2
f(x0) + f(x0 + h) + f(x0 + 2h) +

1

2
f(x0 + 3h)

]

,

which approximates the area by trapezoids. Corrections for each trapezoid
∫ b

a
f(x) dx from 1

2
(f(a) + f(b))(b − a) can be found as follows. Consider the

interval [0, 1]

∫ 1

0

f(x) dx =

∫ 1

0

f(x)B0(x) dx =

∫ 1

0

f(x)
d

dx
B1(x) dx

= f(x)B1(x)|10 −
∫

B1(x)
d

dx
f(x) =

1

2
f(0) +

1

2
f(1) −

∫

B1f
′(x) dx.
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The error is now expressed as an integral of f ′ = f (1)

∫ 1

0

f(x) dx =
1

2
f(0) +

1

2
f(1) −

∫
1

2

(
d

dx
B2

)

f ′(x) dx

︸ ︷︷ ︸

−1

2
B2(x)f (1)(x)

∣
∣
1

0
+

1

2

∫

B2(x)f (2)(x)dx

= −1

2
B2

[
f (1)(1) − f (1)(0)

]
+

1

2

∫

B2(x)f (2)(x)dx

One can continue to replace Bn by 1
n+1

B′

n+1 and integrate by parts, devel-
oping a series of correction terms involving higher derivatives of f at the
endpoints only, and an error term involving a high order derivative of f ,

∫ 1

0

f(x) dx =
1

2
[f(0) + f(1)] −

q
∑

p=1

B2p

(2p)!

[
f (2p−1)(1) − f (2p−1)(0)

]

+
1

(2q)!

∫

f (2q)(x)B2q(x) dx.

What is the optimal q to stop at will depend on the smoothness of f .
This formula does not depend in any way on the interval being from 0 to

1 except for the error term. If we wish to integrate from 0 to n by using the
formula for each unit interval, we get

∫ n

0

f(x) dx =
1

2
f(0) + f(1) + f(2) + · · ·+ f(n − 1) +

1

2
f(n)

−
q

∑

p=1

B2p

(2p)!

[
f (2p−1)(n) − f (2p−1)(0)

]
+ remainder.

Note this is the extended trapezoid rule, that the correction terms from the
endpoints are still no more complicated. Note also the dropped remainder
term vanishes if f is a polynomial of order less than 2q.

While we are considering the zeta function, let us say a few quick words
about cute properties of it.

Recall that ζ(s) =

∞∑

n=1

n−s. Now each n has a unique decomposition into

prime numbers pn1

1 pn2

2 . . .. A sum over all integers is the same as a sum over
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all values of n1, n2, . . . from 0 to ∞, so

ζ(s) =
∑

n1,n2,...

∞∏

i=1

(
p−s

i

)ni .

The factors are independent,

ζ(s) =

∞∏

i=1

∞∑

ni=0

[(
p−s

i

)ni
]

=

∞∏

i=1

1

1 − p−s
i

This sort of clever rearrangement resulting in a sum over peculiar classes of
integers (here only primes) is a typical tool in number theory.

As a place where Bernoulli numbers or zeta functions enter Physics, con-
sider the historically first law of quantum mechanics, Planck’s law for the
energy density per unit frequency range per unit volume of photons in an
empty box is

u(ω) dω =
~

π2c3

ω3 dω

e~ω/kT − 1
.

Substituting x = ~ω/kT , we see that the total energy/unit volume is not
infinite, as Wien would have told us, but

(kT )4

π2~3c3

∫
∞

0

x3 dx

ex − 1
.

You might be tempted to associate this directly with the Bernoulli expan-

sion, e.g. as

∫
∞

0

∑

Bn
xn+2

n!
dx, but each term therein is divergent. Instead,

rewrite as
∫

∞

0

dx x3e−x
(
1 − e−x

)
−1

=

∞∑

n=1

∫
∞

0

dx x3e−nx =

∞∑

n=1

1

n4

∫
∞

0

ds s3e−s.

We shall see in half a lecture that the integral is Γ(4) = 3! = 6, so
∫

∞

0

x3 dx

ex − 1
= 6

∞∑

n=1

1

n4
= 6ζ(4) = −6 × (2π)4

2 · 4!
B4.

B4 = −1/30, so the answer is π4/15, and the energy density is

π2

15~3c3
(kT )4.

Do Homework 5 problem 3 by a similar method. Hint:

(
−2
n

)

= (−1)n(n+1).
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1.3 Infinite products

Occasionally one finds a useful representation of a function not as an infinite
series f =

∑
an but as an infinite product

f =

∞∏

n=1

fi.

Just as for series, f is defined as the limit of the partial products. Clearly
convergence requires fi → 1. In fact, writing

ln f =
∞∑

n=1

ln fi

reduces an infinite product to an infinite series, requiring ln fi → 0 sufficiently
fast, so fi → 1 sufficiently fast.

Consider

x
∞∏

n=1

(

1 − x2

n2π2

)

.

For any x, | ln fn| → x2

π2

1
n2 , so the product converges. Clearly the product is

zero whenever x = ±nπ for any integer n, including zero. Reminiscent of
sin x? That’s exactly what it is. We will prove later

sin x = x

∞∏

n=1

(

1 − x2

n2π2

)

.

If you accept this reasonable formula for the time being, we can prove
some others. Note we can derive a formula for cosx = sin 2x/2 sin x by

sin 2x = 2x

∞∏

n=1

(

1 − 4x2

n2π2

)

2 sinx = 2x

∞∏

m=1

(

1 − x2

m2π2

)

= 2x

∞∏

m=1

(

1 − 4x2

(2m)2π2

)

= 2x

∞∏

even n>0

(

1 − 4x2

n2π2

)



464/511 Lecture G Last Latexed: October 12, 2016 at 11:00 12

∞∏

all n=1

/
∞∏

even n>0

=

∞∏

odd n>0

, so

cos x =
∞∏

odd n>0

(

1 − 4x2

n2π2

)

=
∞∏

m=1

(

1 − 4x2

(2m − 1)2π2

)

.

A more important formula for us is one for x cot x (page 7), which we know
in terms of the Bernoulli numbers. Taking the ln of our product expansion
for the sine,

ln sin(x) = ln(x) +
∞∑

n=1

ln

(

1 − x2

n2π2

)

.

Differentiating with respect to x gives

cos x

sin x
=

1

x
+

∞∑

n=1

−2x

n2π2

1
(

1 − x2

n2π2

) ,

or x cot x = 1 − 2
∞∑

n=1

x2

n2π2

∞∑

r=0

(
x2

n2π2

)r

= 1 − 2
∞∑

n=1

∞∑

m=1

( x

nπ

)2m

.

Now we do the sum on n for each m,

x cotx = 1 − 2
∞∑

m=1

(x

π

)2m

ζ(2m).

But x cotx =

∞∑

m=0

(−1)mB2m
(2x)2m

(2m)!
. Equating like powers of x, B0 = 1 and

B2m = (−1)m+12
(2m)!

(2π)2m
ζ(2m), m ≥ 1

as we claimed earlier (Eq. 1, page 7).
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1.4 The gamma and incomplete gamma functions, and

asymptotic expansions

We define the incomplete gamma function as

Γ(a, x) =

∫
∞

x

e−uua−1du

which is defined for x > 0 for all a, because an exponential blows up faster
than any power. For a > 0, the limit x → 0 exists. We also define

Γ(a) = Γ(a, 0) =

∫
∞

0

e−uua−1du

which is called the gamma function. Note Γ(1) =
∫
∞

0
e−udu = 1, and, for

a > 0,

aΓ(a) =

∫
∞

0

e−uaua−1du =

∫
∞

0

e−u

(
d

du
ua

)

du

= e−uua
∣
∣
∞

0
−

∫
∞

0

ua

(
d

du
e−u

)

du

= 0 +

∫
∞

0

uae−udu = Γ(a + 1).

Thus by induction, Γ(n + 1) = nΓ(n) = n(n − 1) · · ·1 · Γ(1) = n!.
Thus the Γ function is a generalization of the factorial, but defined for

any real argument greater than zero, rather than only for integers.
Note I have fulfilled my promise to show

∫
∞

0
ds s3e−s = Γ(4) = 6.

Note that the integral Γ(z) =
∫

∞

0
e−u uz−1 du is well defined for Re z > 0,

even if z is complex, and the proof we have just given that zΓ(z) = Γ(z+1) is
also valid for Re z > 0. We may extend the definition of Γ(z) to all complex
z other than 0 or negative integers by using the integral for Γ(z + n) with
n > Re z, and then recursing to negative values with Γ(u) = 1

u
Γ(u+1). This

is a form of analytic continuation, which we will discuss in the next lecture.

Now let us return to the real topic of discussion, deriving an asymptotic
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series for the incomplete Γ:

Γ(a, x) =

∫
∞

x

e−uua−1du

= −
∫

∞

x

(
d

du
e−u

)

ua−1du

= − ua−1e−u
∣
∣
∞

x
+ (a − 1)

∫
∞

x

ua−2e−udu

= xa−1e−x + (a − 1)Γ(a − 1, x).

Repeating this process n times gives

Γ(a, x) = e−x
(

xa−1 + (a − 1)xa−2 + (a − 1)(a − 2)xa−3 + . . .

+(a − 1)(a − 2) · · · (a − n + 1)xa−n
)

+(a − 1)(a − 2) · · · (a − n)Γ(a − n, x).

If we carry out the process indefinitely and discard the remainder, we seem to
get an infinite series. The series does not converge, however, because the ratio

test of the n+1’st term (−1)n (n−a)!xa−n−1

(−a)!
to the n’th (−1)n−1 (n−a−1)!xa−n

(−a)!

is −n − a

x
−→
n→∞

−∞ for all x.

Thus the infinite sum is not useful, but for finite n, the remainder has a
definite sign, as Γ(a − n, x) > 0 for real a, and this sign oscillates for n > a.
So successive partial sums bound the correct answer. In fact, the error in
dropping the remainder after n terms is

∣
∣
∣
∣

(n − a)!

(−a)!
Γ(a − n, x)

∣
∣
∣
∣

<

∣
∣
∣
∣

(n − a)!

(−a)!

∣
∣
∣
∣

∫
∞

x

ua−n−1du

=

∣
∣
∣
∣

(n − a − 1)!

(−a)!

∣
∣
∣
∣
xa−n.

For a fixed n and large x, this remainder can still be small. For any x, there
is an ideal n ≈ a + x, at which to stop.

When a = 0

E1(x) := Γ(0, x) =

∫
∞

x

e−u

u
du
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is a version of the logarithmic integral function. We have

E1(x) = e−x

(
1

x
− 1

x2
+

2!

x3
− 3!

x4
+ . . .

)

.

If we have a series f(x) =
n∑

i=0

aix
−i + Rn(x), with Rn(x)xp+n −→

x→∞

0 for

some fixed p, we say f ∼
∑

aix
−i is an asymptotic expansion.


