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Physics 464/511 Lecture F Fall, 2016

Because we seem to live in a three dimensional space with physical laws
which are rotationally and translationally symmetric, we are often concerned
with the dynamics of a scalar field ψ(x, t) described by a Lagrangian density
L(x, t) which depends on ψ(x, t) and ψ̇(x, t) = dψ(x, t)/dt, but there must
also be something which connects ψ at different points, or else each point
would evolve independently of all the others, which is not the common situ-
ation. Now all fundamental physics is local, so coupling between points can
only come from a derivative term, so L will also depend on ~∇ψ, and as L is
a rotationally invariant scalar, not a vector, it most likely occurs as (~∇ψ)2.
To derive the equations of motion by considering a variation δψ in L =

∫

V
L,

this gives a term

∫

V

(~∇ψ) · ~∇δψ =

∫

V

~∇ ·
(

δψ~∇ψ
)

−

∫

V

δψ∇2ψ,

and as the first term is the integral of a divergence and by Gauss equal to a
surface integral, it may be discarded1, and we get a ∇2ψ term in the equation
of motion. (This is analogous to what happens to the 1

2
m(ẋ)2 term in H in

particle dynamics, giving mẍ term in the equation of motion.)
So whatever the motivation, we are presented with many equations in-

volving the Laplacian ∇2, such as

Poisson’s equation ∇2ψ = f(x)

Helmholtz equation ∇2ψ + k2ψ = 0

Wave equation c2∇2ψ −
∂2ψ

∂t2
= 0

Schrödinger equation i~
∂

∂t
ψ =



−
~

2

2m
∇2 + V (x, t)



ψ

Diffusion (constant coefficient D)
∂ψ

∂t
= D∇2ψ

1In the variation, we are supposed to keep δψ = 0 for the initial and final states, and
we may also assume it vanishes on the spatial boundary of our region, if it exists (Dirichlet
boundary conditions), or as |~r| → ∞.
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Poisson’s equation is Laplace’s (∇2ψ = 0) with a source added. We often
consider adding sources to Helmholtz’ equation and the wave equation as
well.

So there is no doubt that it would be very useful to have a good method
of dealing with (inhomogenous) linear partial differential equations where the
differentials are in ∇2.

Now homogeneous linear equations have the advantage that solutions
form a vector space, so particular solutions can be arbitrarily added. In
many interesting situations it is possible to write down a complete set of
particular solutions, so that any solution lies in an (infinite dimensional)
vector space with basis given by that set. In the case of inhomogeneous
equations, i.e. equations which have a source term such as f in the Poisson
equation, if we can write the source as a sum of terms for which we can find
solutions, the full solution is just the sum of these. Also, if we have found
one solution to the inhomogeneous equation and the general solution of the
homogeneous one, the most general solution of the inhomogeneous equation
is the one we have plus an arbitrary homogeneous equation solution.

Now one way to solve a linear partial differential equation, probably the
most common analytic one, is by separation of variables. That is, we may
be able find a set of curvilinear coordinates qj describing our space, for which
the ansatz ψ(q1, q2, q3) = Q1(q

1)Q2(q
2)Q3(q

3), when plugged into the partial
differential equation, separates into ordinary differential equations for the
three functions Qj . Generally this decomposition involves some constants
which couple the ordinary equations to each other, becoming parameters in
the ordinary differential equations. Then the solutions may form a complete
set of functions when the parameters are varied.

Whether this is a useful expansion or not depends on two things:

• whether the differential equation, acting on the product, is simplified,
falling into separable ordinary differential equations.

• whether the boundary conditions, expressed in these variables, are sim-
ple.

Simple essentially means that it doesn’t mix terms in the sum.
We will need an example:

Consider the Helmholtz equation ∇2ψ + k2ψ = 0 in cartesian coordinates
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qi = x, y, z, Qi = X, Y, Z. Then

∂2ψ

∂x2
=
d2X

dx2
(x)Y (y)Z(z),

and similarly for y and z, so

Y Z
d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2
= −k2XY Z

or
1

X

d2X

dx2
+

1

Y

d2Y

dy2

︸ ︷︷ ︸

not a function of z

+
1

Z

d2Z

dz2

︸ ︷︷ ︸

function only of z

= −k2,

so
1

Z

d2Z

dz2
must be a constant, say −n2 (but n imaginary is okay), and simi-

larly
1

X

d2X

dx2
= −ℓ2,

1

Y

d2Y

dy2
= −m2.

Now n, m and ℓ are, at this point, arbitrary constants, except that n2 +m2 +
ℓ2 = k2. As we will be summing over solutions, we may have a set of ℓ’s, ℓj ,

and the individual equations
1

X

d2X

dx2
= −ℓ2j are trivial to solve:

Xj(x) = aj cos ℓjx+ bj sin ℓjx

or Xj(x) = Re cje
iℓjx

for example. The eikx solutions are a complete set, so any solution of
Helmholtz’s equation can be expanded in terms of the ones we just found
by separation of variables. But the boundary conditions may be difficult to
implement. In a rectangular box, the ℓj , mj, nj are determined (or rather
restricted) by the boundary conditions. If, for example, the box is [0, Lx] ×
[0, Ly] × [0, Lz] and has grounded walls on which ψ = 0, all the ai = 0 and
ℓLx = nxπ, or ℓ = nxπ/Lx for nx a positive integer, and similarly for Y and
Z, m = nyπ/Ly and n = nzπ/Lz, with nx, ny, nz ∈ Z

+. Thus there will only
be solutions for certain values of k. For a cubic box, Lx = Ly = Lz = L, k2

is a sum of three squares times π2/L2.
If, instead, our problem were in a spherical cavity, it would not be conve-

nient to expand in this fashion. Instead, of course, one would try spherical
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coordinates. More generally, we may consider trying an arbitrary orthogonal
coordinate system, for which we have already found

∇2ψ =
1

h1h2h3

∑

i

∂

∂qi

(
h1h2h3

h2
i

∂ψ

∂qi

)

.

If one tries to use ψ = Q1(q
1)Q2(q

2)Q3(q
3) and plug into Helmholtz’s equa-

tion, you find

h−2

3 Q−1

3 Q′′

3 +
∂

∂q3

(
h1h2

h3

)
1

h1h2h3

Q−1

3 Q′

3 + (3 ↔ 1) + (3 ↔ 2) + k2 = 0.

You might expect the conditions for separability would be that h−2

3 and
∂

∂q3

(
h1h2

h3

)
1

h1h2h3

be independent of q1 and q2, and cyclic permutations

thereof. But it’s not that simple. In spherical coordinates with q1 = r, q2 = θ
and q3 = φ, we have h1 = 1, h2 = r, h3 = r sin θ, so h−2

3 is not independent
of r or θ. But everything else is independent of φ, so the equation can be
multiplied by h2

3 to give Q−1

3 Q′′

3 = something independent of q3 = φ, but
depending on none of the other variables either. So again it is a constant we
will call −m2, and d2Q3/dφ

2 = −m2Q3. The solution is clearly Q3(φ) = eimφ.
This shows that we will have to play be ear which generalized coordinates

are useful. But we have great faith that spherical ones must be, so if we write
out the equation, plugging in hi and Q′′

3/Q3 = −m2, writting Q1 = R and
Q2 = Θ, we find

R′′

R
+

(
∂

∂r
r2 sin θ

)
1

r2 sin θ

R′

R
+

1

r2

Θ′′

Θ
+

(
∂

∂θ
sin θ

)
1

r2 sin θ

Θ′

Θ
−

m2

r2 sin2 θ
+k2 = 0.

the sin θ cancels in the R′/R term, so if we multiply through by r2, we find
1

Θ
(Θ′′ + cot θΘ′)−

m2

sin2 θ
= something independent of r but also depending

only on r, and therefore constant, say Q, and we have

1

Θ
(Θ′′ + cot θΘ′) −

m2

sin2 θ
= const = Q,

which then leaves
1

R

(

R′′ +
2

r
R′

)

+
Q

r2
+ k2 = 0.
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We have therefore reduced the partial differential (Helmholtz) equation into
three ordinary differential equations. We say that the laplacian is separable

in spherical coordinates, just as in cartesian coordinates. The equation we
get for Θ(θ) is called the associated Legendre equation, which we will study
in some detail later on. The equation for R(r) is called the spherical Bessel

equation.
We would naturally use spherical coordinates if we were asking a question

such as what frequency oscillations a spherical cavity of radius r0 can sustain.
Then we would impose on our equation a boundary condition R(r0) = 0. But
there are also boundary conditions on Θ(θ) and Q3(φ), due to the inherent
meaning of the arguments. ForQ3, if the region of φ in question includes all of
[0, 2π], the condition is periodicity in φ with period 2π, Q3(φ) = Q3(φ+2π),
which imposes the condition that m is an integer, or m ∈ Z. For Θ, we will
need to impose smoothness at θ = 0 and θ = π, where the cot θ blows up. We
shall see that this constrains the constant Q, and gives rise to the associated

Legendre polynomials, and the “spherical harmonics”, which are of crucial
importance in quantum mechanics, particularly atomic and nuclear physics,
and also in the multipole expansion in electrostatics or in electromagnetic
radiation. We will consider these in more detail later.

Another coordinate system we know
will be important is the “circular cylin-
drical” or “cylindrical polar” coordinates
ρ, φ, z, with

ρ =
√

x2 + y2, x = ρ cosφ, y = ρ sinφ.

We see hρ = 1, hθ = ρ, hz = 1, so

φd

φdρ

ρ
φ

ρd
dz

∇2 =
1

ρ

[
∂

∂ρ
ρ
∂

∂ρ
+

∂

∂φ

1

ρ

∂

∂φ
+

∂

∂z
ρ
∂

∂z

]

=
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
.

If ψ = R(ρ)Φ(φ)Z(z) and (∇2 + k2)ψ = 0, we have

1

R

1

ρ

d

dρ
ρ
d

dρ
R(ρ) +

1

ρ2Φ

d2

dφ2
Φ +

1

Z

d2

dz2
Z + k2 = 0.

Only the third term could conceivably depend on z, so it must not, and
1

Z

d2

dz2
Z = −p2, a constant. Similarly only the second can depend on φ, so it
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doesn’t, and
1

Φ

d2

dφ2
Φ = −m2. These have solutions which are sine waves or

exponentials.
Finally

(
1

ρ

d

dρ
ρ
d

dρ
−
m2

ρ2
+ γ2

)

R = 0

with γ2 = k2 − p2. This is Bessel’s equation.
Other coordinate systems are far less commonly used. They are, how-

ever, useful in special cases. For example, if you wanted to find the field
of a long flat conductor of width w and negligible thickness, you would use
elliptic cylindrical coordinates. Bipolar coordinates enable you to solve for
the impedance of a pair of parallel wires such as the 300 Ω cable that used
to connect your TV to the antenna. The rest of chapter 2 of the 2nd edition
of Arfken is an exhaustive list. And you have a project to find another.


