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Physics 464/511 Lecture D Fall, 2016

By now we have introduced the basis differential operations for vector
calculus, divergence, curl, and laplacian, in terms of their expressions in
cartesian coordinates, and we have also learned about vectors, and the ability
to express vectors in terms of different bases. As physics is just full of partial
differential equations requiring manipulations with these ideas, we need to
develop good formalisms for them.

At this point there are two ways to proceed. As we are usually deal-
ing with fields defined on three-dimensional Euclidean space, and differential
operators which include the Laplacian, one approach is to discuss the co-
ordinate systems which can be used to describe 3-D Euclidean space and
in terms of which the Laplacian is tractable, which is to say, separable. In
addition to the ones you are quite familiar with, cartesian, cylindrical polar,
and spherical polar, there are a dozen more, such as elliptic cylindrical or
oblate spheriodal, that are useful for solving problems with certain symme-
tries. These coordinate systems are called curvilinear coordinates, and this
is the way the books of Arfken proceed (especially the second edition, which
gives the full set).

But not all fields of physics are defined in Euclidean space. We are now
increasingly aware that we really live in a curved space determined by General
Relativity. This space is described as a differentiable manifold, which is like a
Euclidean space (or, including time, a Minkowski space) in the infinitesimal
neighborhood of every point, but which differs from it both in the notions
of distance and parallelism, and in that there may not be a single set of
coordinates which smoothly describe the whole space. This is how one can
describe curved spaces. Dealing with manifolds is the topic of differential
geometry. We will follow this path, and only after discussing this more
general theory, specialize to the useful curvilinear coordinates for Euclidean
space.

People often have trouble understanding what it can mean for three di-
mensional space to be curved, because we are so accustomed to thinking that
three dimensional Euclidean space is an absolute given. We have an easier
time picturing two dimensional spaces which are curved, because we can
picture some of them embedded in our Euclidean three dimensional space.
Consider the surface of a sphere, or, using mathematical language correctly,
consider a 2-sphere S2 which is the surface of a three-dimensional ball. We
are accustomed to using coordinates θ and φ, or latitude and longitude, to
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describe points on the sphere, but notice that

• These coordinates are singular at the north and south poles, as θ = 0
(also θ = π) is a single point1 regardless of the value of φ, while in
general on a two-dimensional surface you must specify two coordinates
to define a point.

• The distance needs to be defined, but it is certainly not
√

(∆θ)2 + (∆φ)2.

In fact, we need to point out that the distance between two points on the
two-dimensional space does not mean the distance between them in three di-
mensions, but rather the length of the shortest path in the surface between
them, and that is a complex problem. More generally, when we describe a
curved space what we say must be independent of any notion of it being
embedded in a larger Euclidean space. The language in which to do this is
the language of manifolds and differential geometry.

1 Manifolds

An n-dimensional smooth manifold M is a topological2 collection of points
P, for which in some neighborhood of an arbitrary point P, we can param-
eterize the points by n coordinates3 qj. That is, there is a 1–1 continuous
correspondance between points in an open set U of M containing P and a
chart C with cartesian coordinates qj, which respects the topology, although
the distances4 between points on M are not necessarily those on the chart

1Another disagreement between mathematician’s and physicist’s notation: θ is the
azimuthal angle (angle from the North pole) for physicists, while that is φ for mathemati-
cians. We use physicist’s language here.

2As mentioned in the first lecture, a topological space has a notion of open sets. We
will mostly consider manifolds which also have a metric, defining distances, in which case
the topology is given, as for R

n
, by declaring a set open if every point in it also contains

a neighborhood (or ball) that lies within the set.
3We are going to be talking about covariant and contravariant vectors and tensors,

which we distinguish notationally by placing the indices as subscripts or as superscripts.
The problem of distinguishing a superscript index from a power is not usually a problem,
judging in context. The coordinates of the charts are always indexed with superscripts.

4So far we have not restricted ourselves to manifolds that have metrics. For example,
we might want to describe a 3-dimensional manifold of visible colors. But actually we will
focus on Riemannian or pseudo-Riemannian manifolds which do have metrics, but when
we do, finite distances on M will still not equal Euclidean distances on the charts.
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C. Thus, for example, Piscataway will appear on a chart C1 that contains
Middlesex County and a chart C2 that contains New Jersey, and an open set
on one will correspond to an open set on the other. Although Rand-McNally
may tell us real distances (on M) are proportional to distances on each chart
C, that is a lie, because the surface of the Earth is not flat, and the chart is.
Let us give the map from an open set U in M to Ck the name φk : U → Ck.
If two charts C1 and C2 both contain images of U , the transition function

map from C1 to C2 given by φ2 ◦ φ−1
1 is a map from5 φ1(U) ⊂ R

n into R
n,

and we insist that all our charts are such that the transition functions are
differentiable (as many times as we need). Then the manifold is differentiable.

We require that every point in the manifold M appear on at least one
chart. The set of charts for all the points P ∈ M is called an atlas.

This is not so abstract — if you buy an atlas of the world, there are charts
of each country, which agree on the topology but do not have the distances
exactly correct. No single chart can cover the whole surface of the Earth,
because the maps from U ⊂ M into Ck have to be invertible, which excludes
maps that have Hawaii on both the left and right edges.

The purpose of all this structure is so that we can discuss properties such
as fields on the curved space, or manifold, in terms of things intrinsic to
the space, not depending on the artificial structures like coordinate systems
which we need to describe them. If we have a real scalar field defined on
the manifold, f : M → R, for example the temperature in a continuous
medium, we would like to describe the gradient of the temperature, and its
properties should be describable in some way independent of which chart we
use to describe its argument.

Of course the map φk into the chart Ck

permits us to define a function f̃k({q}) on
the chart by f̃k({q}) = f(φ−1

k ({q})). f̃k

is thus a map from an open set in R
n into

R, so partial derivatives ∂f̃k/∂qj are well
defined. The physics is in the function f ,
but that is hard to write down. The par-
tial derivatives of f̃k are well defined, but
they will, of course, depend on the param-
eterization q of Ck, and are not intrinsic
properties of the field f .

C

R

f

f

f = f

chart

−1

space

q

ϕ

−1ϕ

k

k

k

k

(q  )j

5Of course n = 2 for Rand-McNally charts.
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1.1 Distances and Metric

We will nearly always be interested in differentiable manifolds that have a
defined notion of distance, at least for two points sufficiently close to each
other. For a Riemannian manifold we require that in an infinitesimal neigh-
borhood of any point P there exists a particular chart CP with variables
q̃j such that the measure is given by Euclidean rules, so that the distance
between φ−1(q̃) and φ−1(q̃ + dq̃) is given by Pythagoras (ds)2 =

∑

j(dq̃ j)2,
to lowest order in dq̃. We will also consider pseudo-Riemannian manifolds
for which the chart is Minkowski, and (ds)2 = (dq̃ 0)2 −

∑3
j=1(dq̃ j)2. The

statement that this is always possible, and that in this chart, locally, the
laws of physics are what they would be without gravity, is the statement of
the equivalence principle of general relativity.

Of course this requires a special chart for each point in space(-time),
which is not very useful, and in a general chart containing the point P,
the expression in terms of the new dqj will be more complicated. As the

transition functions are differentiable, we will have dq̃ j =
∑

k

∂q̃ j

∂qk
dqk, so

(ds)2 =
∑

ℓ

(dq̃ ℓ)2 =
∑

jk

gjkdqjdqk, with gjk =
∑

ℓ

∂q̃ ℓ

∂qj

∂q̃ ℓ

∂qk
.

The coefficients gjk form the metric tensor. Note we may (and do) always
take gjk to be symmetric, gjk = gkj.

Thus the basic structure on the manifold is this metric, the distance
between infinitesimally separated points. We can then define the length of
a path as the integral, so if we have a parameterized path P(λ) which gets
mapped into qj(λ) in a chart C, the length of the path between A and B is

ℓ =

∫

q(B)

q(A)

√

∑

jk

gjk(q) dqj(λ)dqk(λ) =

∫

q(B)

q(A)

√

∑

jk

gjk(q) q̇j(λ)q̇k(λ) dλ ,

where q̇j means dqj/dλ.
Einstein introduced the summation convention: indices occurring once

upstairs and once downstairs are implicitly summed over. If greek,
∑3

0; if
latin,

∑3
1. Einstein said this was the “greatest contribution of my life”. Now

ℓ =

∫

q(B)

q(A)

√

gjk(q) q̇j(λ)q̇k(λ) dλ .
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See how much that helps!
The analogue of a straight line in Euclidean space is the geodesic, or

shortest path, between two points on the manifold. We may find the geodesic

equation for it using the same variational principle we use to get the equations
of motion from a Lagrangian in classical mechanics. Let’s review that:

In the Lagrangian presentation of a classical mechanical system, dynamics
is described by the time evolution of some coordinates of a manifold, qj(t),
and is determined by the Lagrangian function of those coordinates and their
first time derivatives, q̇j , L(q, q̇, t). The way the Lagrangian determines the
dynamical path taken by the system is by the requirement that the action
I =

∫

L(q, q̇, t) dt, the time integral of the Lagrangian, be an extremum
under variation of the path, holding the initial and final points q(ti) and
q(tf) fixed. The path qj(t) can be the actual motion of the system if the
variation

δI =

∫
(

∂L

∂qj
δqj(t) +

∂L

∂q̇j

d

dt
δqj(t)

)

dt = 0.

By integrating the second term by parts, and discarding the endpoints be-
cause δqj(ti) = δqj(tf ) = 0 is required, we find the Euler-Lagrange equations

d

dt

∂L

∂q̇j
−

∂L

∂qj

= 0.

Now let’s consider finding the shortest path between two points on a
Riemannian manifold. The action is replaced by the distance, ℓ, the time
by the path parameter λ, and the Lagrangian (times dt) by the infinitesimal
distance

ds =
√

gjk(q) q̇j q̇k dλ,

where now q̇j means dqj/dλ. So we see that the Lagrangian is

L =
√

gjk(q) q̇j q̇k

so L2 = gjk(q) q̇j q̇k, 2L
∂L

∂qj
=

∂gkℓ

∂qj
(q) q̇kq̇ℓ and 2L

∂L

∂q̇j
= 2gjk(q) q̇k .

Thus Euler-Lagrange gives the geodesic equation

d

dλ

1

L

(

gjk(q) q̇k
)

−
1

2L

∂gkℓ

∂qj
(q) q̇kq̇ℓ = 0. (1)
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The L(q, q̇, t) complicates things6

Now
d

dλ

1

L

(

gjk(q) q̇k
)

=
1

L

(

∂gjk

∂qℓ
q̇ℓq̇k + gjkq̈

k

)

−
1

2L3

(

gjkq̇
k
) dL2

dλ

and
dL2

dλ
=

∂gjk

∂qℓ
q̇j q̇kq̇ℓ + 2gjkq̈

j q̇k = q̇k

(

2gjkq̈
j +

∂gjk

∂qℓ
q̇j q̇ℓ

)

.

We define the Christoffel symbol (of the first kind)

Γj,kℓ =
1

2

(

∂gjk

∂qℓ
+

∂gjℓ

∂qk
−

∂gkℓ

∂qj

)

(2)

(which is symmetric under k ↔ ℓ) and note we may write

dL2

dλ
= 2q̇k

(

gkjq̈
j + Γk,jℓq̇

j q̇ℓ
)

. (3)

Then the variational equation becomes

1

L

(

∂gjk

∂qℓ
q̇ℓq̇k + gjkq̈

k

)

−
1

L3

(

gjkq̇
kq̇ℓ [gℓmq̈ m + Γℓ,mnq̇

mq̇n]
)

−
1

2L

∂gkℓ

∂qj
q̇kq̇ℓ

=
1

L

(

δℓ
j −

gjkq̇
kq̇ℓ

L2

)

[

gℓmq̈ m + Γℓ,mnq̇
mq̇n

]

= 0.

This equation has one free index (j, the others are summed over) and so
appears to be n equations determining the functions qj(λ). But this is not
correct, because if we take a linear combination of them by multiplying by
q̇j and summing, the first factor becomes

q̇j

(

δℓ
j −

gjkq̇
kq̇ℓ

L2

)

= q̇ℓ −
gjkq̇

kq̇k

L2
q̇ℓ ≡ 0,

6The 1/L inside the derivative makes things rather messy, and we can derive Eq.(4)
below with simpler algebra if we make use of the insight found laboriously below, by
noting from the start that the length of any path is independent of the parameterization
of it. So we could parameterize the arbitrary path with the length of that path starting
from one end up to the point in question, divided by the total length of the path. Then
L = ds/dλ is constant along the path, we can pull 1/L out of the derivative and have
d

dλ

(

gjk(q) q̇k
)

−
1

2

∂gkℓ

∂qj
(q) q̇k q̇ℓ = 0. The scale factors out, so renaming q̇k = ∂qk/∂s, and

using
dgjk(q(s))

ds
=

∂gjk

∂qℓ
q̇ℓ, we see gjk q̈k =

(

1

2

∂gkℓ

∂qj
−

∂gjk

∂qℓ

)

q̇k q̇ℓ = −Γℓ,jk q̇k q̇ℓ. This

gives Eq.(4) upon raising the free index j.



464/511 Lecture D Last Latexed: September 22, 2016 at 10:20 7

so this linear combination vanishes without imposing any constraint on qj(λ).
Thus we really have only n−1 equations, and qj(λ) is not determined.

There is a simple reason for this. Our parameterized path P(λ) would
have the same length if it were parameterized by any other monotone pa-
rameter φ(λ), so q′ j(λ) := qj(φ(λ)) is the same path with a different param-
eterization but the same length, and clearly minimizing the length cannot
determine the parameterization. In fact, we might have used this initially to
simplify our calculation by insisting that we use a parameter proportional to
the length s from one endpoint up to the point in question as our parameter,
in which case L = ds/dλ is constant, as we did in the footnote below Eq.(1).
Then the factor in parenthesis in Eq. (3) must vanish, and the square bracket
in the next equation vanishes by itself, giving n equations and determining
qj(s).

We will have cause later to define a matrix gjℓ as the inverse of our metric
gℓm, so gjℓgℓm = δj

m, and to define Γj
mn = gjℓΓℓ,mn to be the Christoffel

symbol of the second kind. Multiplying the square bracket by gjℓ gives us
the geodesic equation

Dj := q̈ j + Γj
mnq̇mq̇n = 0 , (4)

where we are assuming the parameter is the distance s, and q̇j = dqj/ds.

1.2 Vectors

We now want to include vectors. We are used to thinking of a vector as
an object unchanged by translations, and being a vector in a mathematical
sense, that is, taking linear combinations, etc.. In Euclidean space, the dis-
placement, the difference of two points, is a vector. But vectors fields on
a manifold are not so simple. What does the difference of two points in a
curved space mean? I can subtract in R

n, but not in M. And how can I
move a vector at one point in M to another to ask if the vectors change with
position?
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Consider three points, A, B, and D, in
M, which map into three points A′, B′,
and D′ in the chart Ck ⊂ R

n. If ∆x =
B′ − A′ and D′ − A′ = 2∆x, does that
mean D − A is twice B − A? Not at all,
for such a statement depends on the chart
Ck as well as any physical properties of the

A
B

D

A’
B’

D’

C

ϕ

k

k

points A, B, and D. Then D′ − A′ = 2(B′ − A′) will not be true for some
other chart, or choice of coordinates. The same problem occurs in trying to
discuss directions. In the chart Ck it appears ~B ′ − ~A ′ = ~D ′ − ~B ′, but again
this will not be true for some other chart, so it tells us nothing about the
actual directions on the manifold.

Thus we cannot define vectors as finite differences of positions on a mani-
fold. Still, we do have physical quantities that are vectors rather than scalars,
and we need to have some way to describe them on a manifold. This is not
a problem if the fields are vectors in some abstract space having nothing to
do with the underlying space (or space-time) such as vectors in isotopic spin
space. But most of the vectors we want to discuss, such as electric fields, are
vectors in ordinary space. How should we define them?

Consider the electric field ~E(P). What does it mean? One way of thinking
about it is that if we make any infinitesimal displacement dP to a charge Q,
it will do work Q~E · dP, whatever that means. Let’s consider the map of
dP into the chart C, which will correspond to some dq. If we consider an
arbitrary infinitesimal displacement

∑

ωjdqj, the work Q~E · dP is some real

number (of Joules), so Q~E is a linear function on the vector space (called
the cotangent space T ∗

P
) spanned by dqj, and so is part of the dual space TP ,

called the tangent space. If we define the dual basis ek to the basis dqj, the
vector ~E =

∑

Ekek and ~E · dP =
∑

Ekωk.
One way we get vector fields on a Riemannian manifold is to take the

gradient of a scalar field f : M → R,

~V (q) = lim
q′→q

f(q′) − f(q)

ds(q′,q)
.

As the value of f at each point is well defined, independent of chart, and
so is the distance ds, this is a chart-independent but abstract definition. It
doesn’t tell us what the components of the vector are. We could, however,
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describe the numerator as a differential,

df := f(q′) − f(q) =
∑

j

∂f̃

∂qj
dqj

as a function df : M×T ∗
q
→ R, where T ∗

q
is an n-dimensional vector space

with basis vectors dqj. T ∗
q

is called the cotangent space to M at the point
P or q. The differential df is an example of a 1-form. It is independent of
the chart, because under a change of coordinates ∂f̃/∂qj transforms with the
inverse of the matrix transforming dqj. Thus the 1-form is intrinsic to the
manifold, even though its components are chart-dependent. More generally,
we may define a general 1-form on M, ω(P) =

∑

j ωj(P) dqj, where the

coefficients are chart-dependent and transform as do ∂f̃/∂qj , that is,

ω′

j =
∑

k

∂qk

∂q′ j
ωk. (5)

This set of coefficients is called a covariant vector. Note that the 1-form
itself can be considered, as we did when considering the work done by the
electric field, as a displacement field, giving a displacement dq at each point
P corresponding to ωj(P) dqj on the chart.

The mathematicians seem to like to do things differently. They like to
define vectors as differential operators on scalar fields. That is, they define
a vector v acting on a scalar field f as associated with a parametrized curve

P(λ) with an image on Ck given by qj(λ) as v(f) =
∑

j

∂qj

∂λ

∂f̃k

∂qj
. So the

vector itself can be thought of as v =
∑

j

∂qj

∂λ

∂

∂qj
with coefficients vj which

transform under change of chart by

v′ j =
∂q′ j

∂qk
vk, (6)

which we call contravariant. Note the basis vectors of this space in the
particular chart are the differential operators ∂

∂qk , which we will write more
succinctly as ∂k, so the basis vectors are

ek := ∂k.
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The space of possible vectors at the point P is called the tangent space TP .
Notice that v is defined for a given direction and “speed”. Mathematicians
then like to define define 1-forms as the dual to vectors, ω : TP → R by
ω(v) =

∑

j ωjv
j, which is chart-independent. Thus T ∗

P
is the dual vector

space to TP , consistent with its notation.
It is important to keep in mind that in our definition, so far at least, the

vector is defined at a particular point P of the manifold. Its tail is tied down,
and there is no way (yet) to compare vectors defined at different points. The
n-dimensional vector space spanned by ek is the tangent space at the point
P, TP . The collection of all the tangent spaces from all the points P of the
manifold is called the tangent bundle, and similarly for the cotangent bundle.

Example: Consider a particle sensing a scalar field, for example tem-
perature. As the particle passes the point P, at what rate does its ambient
temperature change? Consider a chart. Then qk(t) is the image of its position
as a function of time t, and

dT

dt
=

∂qk

∂t

∂TC

∂qk
=

∂qk

∂t
ek(T )

is the rate of change of temperature. This is true for any other scalar field

as well, so we have an operator u =
∂qk

∂t

∂

∂qk
with

u: scalar field 7→ time derivative of the field felt by a particle.

u is the velocity of the particle!7

7In relativity, the manifold M is space-time, xµ are the four coordinates in the chart,
one of which is time, and a particle has a worldline which maps on the chart into xµ(τ),
where τ is the proper time. Then

dT

dτ
=

∂xµ

∂τ

∂TC

∂xµ
=

∂xµ

∂τ
eµ(T )

is the rate of change of temperature with respect to the proper time measured by the
particle. Again this works for any other scalar field, so we have an operator

u: scalar field → proper time derivative of the field felt by a particle.

u is the 4-velocity of the particle! Its four components on a given chart is what we call a
4-vector in courses on special relativity.
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1.3 Tensor products and metric

Mathematicians tell us, and we discussed in Lecture B, that given two vector
spaces U and V , we define the tensor product, so there is nothing new in
things like U ⊗ V . Physically it will only be useful to consider such tensor
products of vectors defined at the same point. If ej and e′j are basis vectors of
U and V respectively, a basis for U ⊗V is ej ⊗ e′k, and an arbitrary tensor in
U ⊗ V is

∑

jk vjkej ⊗ e′k. And of course we can tensor more than two vector
spaces. We are particularly interested in tensors where each U and V is
either TP (with basis vectors ej = ∂/∂qj) or T ∗

P
(with basis vectors ej = dqj).

An arbitrary vector Γ ∈ TP ⊗ T ∗
P
⊗ T ∗

P
will have coefficients Γj

kℓ. Note it
is important to keep the order of the indices clear. The upper indices are
called contravariant, and the lower indices covariant. Under change of chart,
the coefficients transform with a product of partial derivative matrices, each
according to Eq. (5) or Eq. (6).

We do have one example of such a tensor, the metric

(ds)2 = gjkdqjdqk.

As this is to be an intrinsic field on the manifold, the coefficients gjk must
transform as a covariant tensor,

g′

jk =
∂qℓ

∂q′ j
∂qm

∂q′ k
gℓm.

As an element of T ∗
P
⊗ T ∗

P
, it is intended to give a real value when applied

to two contravariant vectors, say u = uj∂j and v = vk∂k, that is g(u,v) =
gjku

jvk. But that means that associated with each contravariant vector u

in TP , we have a natural covariant vector ũ = g(u, ·) in T ∗
P

defined by
ũ(v) = g(u,v) = gjku

jvk. We write the expansion of ũ in terms of the basis
elements dqj of T ∗

P
as ũ = ujdqj. But the basis elements act on contravariant

vectors by dqj(v) = vj, so we must have ujv
j = gjku

jvk for any v, or

uk = gjk uj , and also uj = gjkuk, with gjkgkℓ = δj
ℓ ,

that is, g·· is the inverse matrix to g·· .
This is general — we can convert between contravariant tensor indices and

covariant ones by multiplying by the metric tensor g·· or its inverse g··. In
particular, we did this for the Christoffel symbol of the first kind to produce
the Christoffel symbol of the second kind,

Γj
mn := gjkΓk,mn .
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1.4 n-forms

We saw that the differential of a scalar function f gives us a 1-form df , but
this is not the most general 1-form in the cotangent bundle, which is more
generally

ω(P) = ωj(q)dqj.

As we mentioned earlier, ω is chart independent because the coefficients ωj

transform covariantly. If a 1-form ω is the differential of a scalar f ,

ωj =
∂f

∂qj
=⇒

∂ωj

∂qk
=

∂

∂qk

∂

∂qj
f =

∂

∂qj

∂

∂qk
f =

∂ωk

∂qj
,

which will not be true for a general 1-form. In fact, we define the differential
of ω to be the 2-form

dω =
1

2

∑

jk

(

∂ωk

∂qj
−

∂ωj

∂qk

)

dqj ∧ dqk =
∑

jk

∂ωk

∂qj
dqj ∧ dqk,

where we define8 dqj ∧ dqk = 1
2

(

dqj ⊗ dqk − dqk ⊗ dqj
)

.
Intuitively, just as dqj can be considered one component of an infinitesimal

line element, dqj∧dqk can be thought of as an infinitesimal piece of a surface.
We see that ω is exact, which means it is the differential of a scalar

function or 0-form, only if its differential vanishes, in which case we say ω is
closed.

We saw that a 1-form is a natural way to describe a gradient. In Euclidean
space in cartesian coordinates xj , we saw that the components of the gradient
~∇f are just the coefficients of dxj in the 1-form df . We can consider that the
dxj are basis vectors, and if we use other coordinates dqj, we can still consider
dqj as basis vectors, but in general not orthonormal ones. If we associate a
general 1-form ω =

∑

j ωjdxj in cartesian coordinates with a vector ~V with
components ωj, the components of the curl,

(

~∇× ~V
)

i
= ǫijk

∂

∂xj
Vk

give the coefficients of 1
2
dxj ∧ dxk in dω.

Note that if we are in a Euclidian space in other than 3 dimensions, the
same differential operator could be defined, but we could not replace the two

8See next footnote about ambiguity on whether to include the 1

2
.
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indices j and k by a single index i with the ǫ symbol. In three dimensions an
exact 2-form is a curl, but in other dimensions we still have exact 2-forms, but
they are not associated with a vector, but with an antisymmetric two-index
tensor.

These are the first two steps in defining the exterior algebra E(M) of M,
and of the exterior derivative d. More generally, the wedge product of n
basis elements dqj of 1-forms is the totally antisymmetric product,

ω1 ∧ ω2 ∧ . . . ∧ ωn =
1

n!

∑

P∈Sn

(−1)P
ωP (1) ⊗ ωP (2) ⊗ . . . ⊗ ωP (n)

where the sum is over permutations P of the n indices, and (−1)P is the sign
of the permutation. The exterior derivative of an n-form9

ω({q}) =
1

n!

∑

j1,j2...jn

ωj1,j2...jn
({q}) dqj1 ∧ dqj2 ∧ . . . ∧ dqjn

is the n+1-form

dω =
1

n!

∑

j0,j1,j2...jn

∂ωj1,j2...jn
({q})

∂qj0

dqj0 ∧ dqj1 ∧ dqj2 ∧ . . . ∧ dqjn.

Again, ω is called exact if there is an (n−1)-form ν such that ω = dν, and
ω is called closed if dω = 0. And again, exact implies closed.

In cartesian coordinates in three dimensional Euclidean space, we can
associate a vector V = viêi with a 1-form ω =

∑

i v
idxi, but we can also

associate a vector with a 2-form ω
(2) = 1

2

∑

jk Bjk dxj ∧ dxk with

Bjk =
∑

i ǫijkv
i, or vi = 1

2
ǫijkBjk. So if we have a vector ~V = viêi associated

with ω, then ω
(2) = dω =

∑

jk

∂vk

∂xj
dxj ∧ dxk has Bjk = 2

∂vk

∂xj
, and is

associated with a vector ~W = wiêi with wi =
1

2
ǫijkBjk = ǫijk ∂vk

∂xj
. So we see

~W = ~∇× ~V .

9Whether or not there is an n! in the relation between the form and the coefficients
seems to be unsettled. With 1/n! this seems to agree with Vaughn. The same is true for
the wedge product, above, where I agree with Vaughn but disagree with MTW p. 99, and
Wikipedia waffles on this.
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Now consider the vector ~U = uiêi associated directly with the 2-form
ω

(2) = 1
2

∑

jk Bjk dxj ∧ dxk with Bjk =
∑

i ǫijk ui. Its differential is

dω
(2) =

1

2

∑

ℓjk

∂Bjk

∂xℓ
dxℓ ∧ dxj ∧ dxk =

1

2

∑

iℓjk

ǫijk

∂ui

∂xℓ
dxℓ ∧ dxj ∧ dxk.

But there is only one 3-form in three dimensions, up to a scalar field, so we
define the standard volume element in three dimensions10

Ω =
1

6
ǫℓjkdxℓ ∧ dxj ∧ dxk

(which means dxℓ ∧ dxj ∧ dxk = ǫℓjk Ω). Then we have

dω
(2) =

1

2

∑

iℓjk

ǫijk ǫℓjk ∂ui

∂xℓ
Ω =

∑

i

∂ui

∂xi
Ω = (~∇ · ~U)Ω.

So we see that the exterior derivative maps

f −→
d

~V = ~∇f ~V −→
d

~∇ · ~V

l l
~V −→

d

~∇× ~V

scalar into its gradient, vector (as 1-form) into its curl, vector (as 2-form)
into its divergence. Note that applying the exterior derivative twice in a row
gives zero, d2 = 0, because exact forms are closed.

Note that the n-forms are intrinsic to the manifold, so the relations be-
tween n-forms are not chart-dependent, but the relationships we have given
between vectors described in our usual orthonormal notation and the n-forms
requires the coordinates to be cartesian, until we covariantize their notation.
In particular, we will need to covariantize ǫ.

Next time: Integration

10We will see why we call it that in the next lecture.


