Physics 615.   Overview of QFT    (Fall 2010) 

Course info      |     Plan of lectures   |  Homeworks and Solutions     |     Useful Links      |     E-mail

Course info

Room: ARC-212
           Monday,   Thursday;   12:00-1:20 PM

Instructor: Sergei Lukyanov
         office: Serin E364
         office phone: (732)-445-5500 ext.4622 
         e-mail: sergei@physics.rutgers.edu (the best way)

Office hours: Wednesday 2:00-4:00 pm



Text Book: M.E. Peskin, D.V. Schroeder: Quantum Field Theory
                   Westview Press, 1995

 
Homework: There will be  homework assignments.
                   Late homework will not be accepted. Homework                    will be graded and give an  important contribution                    to your final grade (final score = 50% Homework +                    + 50% Final). 

Exams: There will be a  final take-home exam.

Students with Disabilities:

If you have a disability, it is essential that you speak to the course supervisor early in the semester to make the necessary arrangements to support a successful learning experience. Also, you must arrange for the course supervisor to receive a Letter of Accommodation from the Office of Disability Services.
http://www.physics.rutgers.edu/ugrad/disabilities.html

Download this info in PDF format

 

Plan of  lectures

This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to the speed with which we cover material, individual class interests, and possible changes in the topics covered. Use this plan to read ahead from the text books, so you are better equipped to ask questions in class.
 

 

 

                               INTRODUCTION


  •  CLASSICAL FIELD THEORY:    Lagrangian density. Example: Continuum limit of a one dimensional lattice. Lorentz invariance. Locality and causality. Equations of motion.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 2.1, 2.2)
  • 2) H. Goldstain: Classical Mechanics, Addison-Wesley, 3d edition (Chapters 13.1, 13.2)
    3) L.D. Landau and E.M. Lifshitz: The Classical Theory of Fields, Buterworth Heiemann, 4th ed (Chapters 1-7)
  •   NOETHER's THEOREM:    Symmetry. Noether's theorem. Energy-momentum tensor. Examples.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapter 2.2)
  • 2) H. Goldstain: Classical Mechanics, Addison-Wesley, 3d edition (Chapters 13.3, 13.5, 13.7)
    3) L.D. Landau and E.M. Lifshitz: The Classical Theory of Fields, Buterworth Heiemann, 4th ed (Chapters 26-33)
  •   KLEIN-GORDON FIELD:    Hamiltonian formalism. Quantization. Fock space. Spectrum. Causality and local commutativity in QFT. Feynman propagator.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 2.3, 2.4)
  • 2) H. Goldstain: Classical Mechanics, Addison-Wesley, 3d edition (Chapter 13.4, 13.6)                                                                                 

                                                                          

                      THE DIRAC FIELD


  •   REPRESENTATIONS OF THE LORENTZ GROUP:    Representations of the infinitesimal Lorentz group. Left- and right- handed spinors. Vector representations. Space Inversions and Time-Reversal. The Dirac spinor. Dirac spinor bilinears. Algebra of the Dirac matrixes.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 3.1, 3.2, 3.4)
  • 2) P. Ramond: Field Theory. Published by Westview Press, 1997 (2d edition) ISBN 0201304503, 9780201304503 (Chapters 1.2, 1.4)
    3) L.D. Landau, E.M. Lifshitz, V.B. Berestetskii and L.P. Pitaevskii: Quantum Electrodynamics (Course of Theoretical Physics, Volume 4) Buterworth Heiemann, 2nd ed (Chapters 3.17-3.19, 3.22)
  •   THE DIRAC EQUATION:    
    The Dirac and Weyl Lagrangians. Free-particle solutions of the Weyl equation. Helicity. Free-particle solutions of the Dirac equation. Spin sums.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 3.1-3.3)
  • 2) L.D. Landau, E.M. Lifshitz, V.B. Berestetskii and L.P. Pitaevskii: Quantum Electrodynamics (Course of Theoretical Physics, Volume 4) Buterworth Heiemann, 2nd ed (Chapters 3.20, 3.21, 3.23, 3.30)
  •   THE QUANTIZED DIRAC FIELD:    
    The canonical quantization of the Dirac field. The relation between the spin and the statistics. The Dirac propagator. Grassmann numbers.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapter 3.5)
  • 2) L.D. Landau, E.M. Lifshitz, V.B. Berestetskii and L.P. Pitaevskii: Quantum Electrodynamics (Course of Theoretical Physics, Volume 4) Buterworth Heiemann, 2nd ed (Chapter 3.25)
  •   DISCRETE SYMMETRIES OF THE DIRAC THEORY:    
    Symmetries in the quantum system. Parity. Time reversal. Charge conjugation. CPT-theorem.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapter 3.6)
  • 2) L.D. Landau, E.M. Lifshitz, V.B. Berestetskii and L.P. Pitaevskii: Quantum Electrodynamics (Course of Theoretical Physics, Volume 4) Buterworth Heiemann, 2nd ed (Chapters 3.26-3.28)
    3) S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, Vol.1 (Chapters 2.1-2.3 )
    4) (Advanced Book Classics) R.F. Streater and A.S. Wightman; PCT, spin and statistic and all that. Princeton University Press, 2000 ISBN 0691070628, 9780691070629                                                                                      

                                                                                    

                        PERTURBATION THEORY


  •   INTERACTING FIELDS:    
    Perturbative QFT. Relevant, marginal and irrelevant perturbations. Examples: ``phi-fourth'' theory, Yukawa theory, QED.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapter 4.1)
  •   FORMAL PERTURBATIVE EXPANSION OF CORRELATION FUNCTIONS:    
    Interaction picture. Dyson series. Wick's theorem. Feynman diagrams for ``phi-fourth'' theory. Symmetry factors. Disconected (vacuum) diagrams. Diagramology: Fully connected and ``amputated'' correlation functions, proper verteces. Momentum-space Feynman rules.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 4.2-4.4)
  •   ULTRAVIOLET DIVERGENCIES IN ``PHI-FOURTH'' THEORY:    
    Mass operator at the lowest perturbative order. Wick rotation. Mass renormalization. Counting of ultraviolet divergences. Renormolized coupling constant. Field-strength renormalization.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 10.1, 10.2)
  •   RENORMALIZED PERTURBATION THEORY:    
    Renormalization programm. Interacting fields in $d$-dimensions. Dimensional regularization. Renormalization schemes. Renormalization at the leading order in ``phi-fourth'' theory.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 10.1, 10.2, 7.5 (pp.249-251))
  •   RENORMALIZATION GROUP EQUATION:    
    The massless ``phi-fourth'' theory. Renormalization scheme. ``Critical'' submanifold. Callan-Symanzik equation. Renormalization group flow. Running coupling constant.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 12.2, 12.3)
  •   THEORIES WITH FERMIONS:    
    Wick theorem. Feynman rules for fermions. Overwiew of renormolized perturbation theory for the pseudoscalar Yukawa theory.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 4.7, 7.5 (pp.249-251))                                                                                      

                                                                                    

                        SCATTERING  THEORY


  •   ASYMPTOTIC THEORY:    
    Spectral assumptions. Kallen-Lehmann spectral representation. In- and out- states. S-matrix. The LSZ reduction formula. Computing S-matrix elements from Feynman diagrams. Rates and cross sections.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 7.1, 7.2, 4.5, 4.6);
  • 2) S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, Vol.1 (Chapters 3.1, 3.2, 3.4, 3.5)
    3) C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill International Editions [IZ], Vol.1 (Chapter 5);
    4) R.F. Streater and A.S. Wightman; PCT, spin and statistic and all that. Princeton University Press, 2000 ISBN 0691070628, 9780691070629;
  •   EXAMPLES OF S-MATRIX:    
    Simplest scattering amplitudes for ``phi-fourth'' and Yukawa theories. Mandelstam variables. Nonreletevistic limit.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 4.5-4.7)
  •   ELEMENTARY PROCESSES OF QED:    
    Feynman Rules for QED. The Coulomb Potential. e + e^+ -> mu + mu^+ and e+mu->e+mu cross secrtions. Compton scattering.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 1, 4.8, 5.1-5.3, 5.5);
  •   GENERAL PROPERTIES OF S-MATRIX:    
    Crossing symmetry. C, P, T -invariance. Optical theorem.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 5.4, 7.3);
  • 2) S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, Vol.1 (Chapters 3.3, 3.6)                                                                                      

                                                                                    

                        QED


  •   UV DIVERGENCIES:    
    Current correlation functions. Counting of the UV divergencies. Photon polarization operator. Non-renormalizability of the conseved current. Renormalized perturbation theory. Normalization conditions.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 10.1, 10.3, 7.5);
  •   RADIATIVE CORRECTIONS:    
    Electron-photon vertex and two particle form factors of the current. Schwinger's correction. Infrared divergencies.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 6.1-6.5, 7.3);
  •   GAUGE INVARIANCE:    
    Electron self-energy. Ward-Takahashi identities.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 7.1 (pp.217-222), 7.4;
  •   UV ASYMPTOTICS:    
    Vacuum polarization. Callan-Symanzick equation. Running coupling constant. Landau pole.
    Literature: 1) M.E. Peskin, D.V. Schroeder: Quantum Field Theory (Chapters 7.5, 12.2);

Download syllabus

 

Homeworks and Solutions  

The assignments and solutions are stored in PDF format. The absolute cutoff time for homework is 4pm due date.


Assigned on
Assignment
Due Date
Solution
 
1. Sep 2, 2010 pdf   Sep 13, 2010 pdf  
2. Sep 13, 2010 pdf   Sep 23, 2010 pdf  
3. Sep 23, 2010 pdf   Oct 7, 2010 pdf  
4. Oct 7, 2010 pdf   Oct 18, 2010 pdf  
5. Oct 18, 2010 pdf   Nov 1, 2010 pdf  
6. Nov 1, 2010 pdf   Nov 18, 2010 pdf  
7. Nov 18, 2010 pdf   Dec 2, 2010 pdf  
8. Dec 2, 2010 pdf   Dec 13, 2010 pdf  
 
         

Final exam:


Due to Dec 20, 2010
 

Useful Links  
1. "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables",
M. Abramowitz and I. Stegun
   
   

Course info     |     Plan of lectures  |     Homeworks and Solutions     |     Useful Links     |     E-mail