

Guy Ron (for the MUSE collaboration)
Hebrew University of Jerusalem

MUSE IS NOT YOUR GARDEN VARIETY SCATTERING EXPERIMENT

Low beam flux

Large angle, non-magnetic detectors.

Secondary beam (large emittance)
Tracking of beam particles
to target.

Mixed beam

Identification of beam particle in trigger.

Experiment Overview

PSI πM1 channel

≈115, 153, 210 MeV/c mixed beams of e[±], $\mu^{\, \pm}$ and π^{\pm}

$$\theta \approx 20^{\circ} - 100^{\circ}$$

 $Q^2 \approx 0.002 - 0.07 \text{ GeV}^2$

About 5 MHz total beam flux, $\approx 2-15\%$ μ 's, 10-98% e's, 0-80% π 's

Beam monitored with SciFi, beam Cerenkov, GEMs

Scattered particles detected with straw chambers and scintillators

Not run like a normal cross section experiment - 7-8 orders of magnitude lower luminosity.

But there are some benefits: count every beam particle, no beam heating of target, low rates in detectors, ...

Experiment Overview

$$Q^2 \approx 0.0015 - 0.08 \text{ GeV}^2$$

$$\varepsilon \approx 0.256 - 0.94$$

Essentially same coverage for all beam particles.

PSI πM1 Channel Characteristics

≈100 - 500 MeV/c mixed beam of µ's + e's + π's

Spots from $0.7x0.9 \text{ cm}^2$ up to $16x10 \text{ cm}^2$, $\Delta p/p$ from 0.1-3.0%, used previously.

MUSE Design Choices

- Minimal R&D.
- Use existing designs as much as possible.
- Reuse equipment whenever possible.
- Maximal cost reduction.
- Modular construction (can run dress rehearsal with fewer components).

Performance Requirements

- Angle reconstruction to few mr (limited by multiple scattering).
- Reduce multiple scattering as much as possible.
- Mostly timing used for PID O(50ps) time resolution.
- 99% or better online π rejection.

Beamline Detectors Beam Scint. Scattered Particle **Scintillators Straw** Chambers Target **Target** Chamber SciFi Veto **GEMs** Beam Scintillator Cerenkov SVN r380 K.Myers 15/Jan/2014

Detectors - beam Cerenkov

- •Improve timing at target.
- Muon decay event rejection.
- •140ps achieved with cosmics (~110ps from geometrical).
- •Estimate 25-50ps resolution can be reached.
- Crystals placed at Cernekov angle -> better timing from prompt photons.
- •Fast MCP-PMT photon detection.
- •Likely to use Sapphire/Plastic.

MCP-PMT

Quartz Bars

Cosmic Test: Scintillator MT - Beam Cerenkov Time Difference

Detectors - SciFis

- One scintillating fiber array near target
- Precise timing at target, less precise than Cerenkov, but with higher segmentation and rate capability
- RF to target TOF for beam PID
- Provide GEM trigger, spatial info for multi-hit / multi-track selection, to identify triggering track
- 3 SciFi planes + walk correction gives ~300ps timing resolution.

- YUV plane arrangement
- 40 2mm circular fibers / plane
- Double sided readout with maPMT
- Multiplexed to reduce channel cross-talk

Detectors - SciFis

Prototyping at Tel Aviv

Detectors - GEMs

- •Determine trajectory for scattering angle and Q^2 .
- •70um Spatial resolution.
- •Third GEM rejects ghost tracks.
- •Existing detector repurposed from OLYMPUS experiment @ DESY.

Detectors - Veto

- •8 Segment annular detector around target entrance window.
- •Discriminate against muon decay events.

Detectors - Beam line Scintillators

- •Beam flux normalization.
- Veto to remove Møller electrons.

Target

Target

LH₂ target cell

- Thin windows to limit backgrounds
- Small enough to limit multiple scattering
- Big enough so all but tails of beam go through cryogen, not side walls.
- Current plan 4 cm wide x 8 cm high x 4 cm long.

Low power system

- LN₂ baffles reduce heating.
- Snow prevention using baffles + extra space.

Straw Tube Tracker

PANDA STT

- Based on ~1.5m long straws (1cm diameter).
- Close packed straws, w/ minimal gaps.
- ≈ ~30um thick straws -> low material budget.
- Mechanical stability provided by overpressuring straws to ~2bar - allows significantly lower material budget.

Element	Material	X[mm]	$X_0[cm]$	X/X_0
Film Tube	Mylar, $27 \mu\mathrm{m}$	0.085	28.7	3.0×10^{-4}
Coating	Al, $2\times0.03\mu\mathrm{m}$	2×10^{-4}	8.9	2.2×10^{-6}
Gas	$Ar/CO_2(10\%)$	7.85	6131	1.3×10^{-4}
Wire	$W/Re, 20 \mu m$	3×10^{-5}	0.35	8.6×10^{-6}
			\sum_{straw}	4.4×10^{-4}

Gas Mixture

Table 2.2: Properties of different gases and gas mixtures. Z and A are charge and atomic weight, for molecules the total number has to be taken, N_p and N_t are the number of primary and total electrons per cm, respectively, E_x and E_i are the excitation and ionization energy, respectively, W_i is the average energy required to produce one electron-ion pair in the gas, $(dE/dx)_{mip}$ is the most probable energy-loss by a minimum ionizing particle and X_0 is the radiation length. For gas mixtures, the weighted average value has been taken.

Gas or	Z	A	\mathbf{E}_{x}	\mathbf{E}_i	\mathbf{W}_{i}	dE /dx	N_p	N_t	X_0	
gas mixture			[eV]	[eV]	[eV]	[keV/cm]	$[\mathrm{cm}^{-1}]$	$[{\rm cm}^{-1}]$	[m]	
He	2	4	19.8	24.5	41	0.32	4.2	8	5299	
Ar	18	40	11.6	15.7	26	2.44	23	94	110	
CO_2	22	44	5.2	13.7	33	3.01	35.5	91	183	
i-C ₄ H ₁₀	34	58	6.5	10.6	23	5.93	84	195	169	
$Ar+10\% CO_2$	75 <u>1</u> 0	<u> </u>	22	12	26.7	2.5	24.6	93	117	
He+10%i-C ₄ H ₁₀	-	-	-	-	39.2	0.88	12.7	26.7	1313	
He+20%i-C ₄ H ₁₀	-	-	-	-	37.4	1.44	20.6	45.4	749	

- ★ Ar (90%)/CO2(10%) mixture selected achieves design goals.
- Non toxic/non flammable easy to deal with.
- Achieved ~150um resolution and better than 8kHz/cm.

Construction Procedure

Wires:

- Straws cut to length.
- End caps glued and 1 wire end crimped.
- 12h glue hardening.
- Wire stretched w/ 50g weight and pressure raised (2bar).
- 2nd wire end crimped.
- **Straw planes:**
 - Straws placed on jig.
 - Each monolayer glued @ predefined points.
 - Additional layers stacked on first layer.
 - Final arrangement clamped in place.
- Procedure designed to allow straws/wires to be positioned at the 25um level.

Gas distribution

- Mixture/Pressure controlled by pressure controllers/gas flow controllers from Bronkhorst inc.
- Gas distribution to individual chambers from single mixing chamber.

MUSE Electronics

- Straws provide low charge signal, suitable for discrimination with front end PADIWA board.
- MUSE will use the standard PADIWA->TRB3 setup that is planned for all timing detectors.
- HV distribution / readout card for the straw chambers will be designed and prototyped @ HUJI eshop.

MUSE Design

- The tracker design has been modified to accommodate the MUSE requirements.
- Design calls for 2 chambers on each side of the detector.
- 5X/5Y planes per chamber.
- X-planes likely closer to target to allow for better resolution in scattering angle.
- ≈ ~3000 straws total.

TABLE VII. Wire chamber parameters including the distance from the pivot, chamber active area and the number of wires.

Chamber	Distance	Active Area	Number of Straws	
	(cm)	(cm^2)	per chamber	
Front	30	60 × 55	575	
Back	45	90 × 80	850	

Scintillators

Scintillator Overview

- * Produced by USC based on design for CLAS12 upgrade.
- * State-of-the-art production lab @ USC already set up.

* Expect at least 6 bars/week production rate once

design is finalized.

The CLAS12 Scintillator Detector

Scintillators:

BC-404; 6 cm x 6 cm x (50 - 200) cm

PMT: Hamamatsu R9779, d = 51 mm.

(2) No Light guides;

PMT directly glued to SC;

gluing procedure in

batches of 6 bars in

'windmill' type setup

PMT

- (3) Scintillator wrapped in Aluminized Mylar
- (4) Light tight **DuPont Tedlar** encases entire counter

 Corners masked with black tape

Achieved Time Resolutions

 Time resolution after calibration, event selection, time-walk correction:

Scintillator Overview

- ➤ Vertically oriented bars, covering the full acceptance (20-100 deg) in 2 walls.
- Back wall increased in size to account for multiple scattering.

Scintillator Overview

	Front wall	Back wall
Number of scintillator bars	17	27
Scintillator cross section	6 cm x 2 cm	6 cm x 6 cm
Scintillator length	103 cm	163 cm
Target to front-face distance	50 cm	73 cm
Gap between scintillator bars	0.02 cm	0.02 cm
Scintillation material	BC-404	BC-404
Photomultiplier	Hamamatsu R9779	Hamamatsu R9979

Scintillator Readout

- R9779 PMTs with double output last dynode + anode.
- Dynode (slower) output readout into QDC.
- Anode (fast) readout fed directly into PADIWA for discrimination and TDC.
- Time-walk correction based on QDC.
- Scintillator efficiency better than 99%.

Triggering and Data Acquisition
Scattered Beam Scint. **Particle Scintillators Straw** Chambers Target **Target** Chamber SciFi Veto **GEMs** Beam Scintillator Cerenkov

SVN r380 K.Myers 15/Jan/2014

- •GSI designed Time-to-Digital converters (25ps resolution).
- •FPGAs as front end discriminator/amplifier.
- •High channel density (256ch/board).
- •ADC signals into standard CAEN architecture (v792).
- •Custom designed signal splitters where needed.
- •Triggering implemented on same architecture.

Data Acquisition

- Data Acquisition based on standard PSI DAQ software (MIDAS).
- Trivial integration with PSI slow controls.
- Distributed frontend allow for high event rate (not limited by software/DAQ).
- Test runs carried out with individual modules of each type of component needed for the DAQ.

New Equipment Summary

Detector	Who	Technology	
Beam SciFi	Tel Aviv	conventional	
GEMs	Hampton	detector exists	
Sapphire Cerenkov	Rutgers	prototyped (Albrow et al)	
Trigger	Rutgers	TRB3 based	
Target	George Washington	conventional - very low power	
Straw Tube Tracker	Hebrew U	copy existing system (PANDA)	
Scintillators (including beam and veto)	South Carolina	copy existing system	
DAQ	George Washington	conventional, except TRB3	