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1. Geant4 physics model and 
simulation verification

2. Simulation of detector and 
beam properties

3. Preliminary study of analysis 
topics

‣ Particle tracking and 
scattering-angle 
reconstruction

‣ Møller/Bhabha scattering 

‣ Muon decay in flight
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Physics: test of ep - scattering cross section
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ep elastic cross section reasonably 
well described in Geant4 at 
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Momentum-angle correlation approximated for forward angle elastic ep 
scattering.

Physics: Mott and Møller scattering
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Pulse-height distribution: electrons and muons
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Data (Summer 2013): 

‣ 5 cm x 5 cm x 50 cm scintillator with 2 PMTs.

Geant4 simulation

‣ Universal energy scale of the MC data for all 
runs and all particle types.

‣ Histograms normalized for equal number of 
entries.

‣ Adjustment of beam parameters in simulation 
to fit pulse-height spectrum. ADC
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Maximum-signal scintillators
Closest above-threshold scintillators

-Particle: e

 = 115 MeV/c
in

p

 = 2.0 MeVthE

Scattered particle scintillator 
- paddle correlation

• Front- and back-wall hits are highly 
correlated if the event originated in 
the target.

• Imposing a hardware coincidence with 
the expected correlation does reduce 
accidental background.

• Measured correlation will help 
validate the simulation.
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Detector efficiency of TOF wall scintillators

• Efficiency of scattered particle scintillators is ≳ 99%

• Small (< 1%) effects which will be corrected

- Annihilation of positrons in the front wall

- Multiple scattering of low-momentum muons (with directional cut)
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Multiplicity of scintillator-paddle hits

• In most cases one or two bars trigger per scintillator wall.

• Hit multiplicities can be used to validate the simulation.
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Veto detector essential to reduce trigger rate
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Trigger-rate reduction after veto:

‣ electrons ≈ 1/3
‣ muons ≈ 1/2

Veto
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Beam-momentum distributions are an important input to radiative 
corrections of the scattering cross section.

Simulation helps to understand the beam 
momentum distribution
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p(e,e’) 
scattering event
inside the target

153 MeV/c
electron

Ionization and
Bremsstrahlung

in the thick rear
scintillator wall

11

Particle-track 
reconstruction using hit 
information from 

‣ hits in GEM detectors 
(incident) and

‣ straw chambers 
(scattered)

Tracking of simulated events



Vertex Resolution 𝝈 ≲ 6 mm
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Vertex reconstruction of muon events
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Reconstruction of muon scattering vertex is of sufficiently high resolution to 
cleanly separate scattering events within the target from other sources.
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Vertex reconstruction for electrons
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Radiation processes affect vertex reconstruction of electrons. Small background 
can be studied and corrected for with empty target measurements and simulations.



Sufficient resolution of the scattering angle 
reconstruction

Reconstruction of the scattering angle for simulated events with 
reconstructed reaction vertex within the target volume and 𝜽 > 20˚
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Møller scattering background

Signatures

‣ Scattered Møller electron 
forward peaked

‣ Scattered electron has low 
momentum

‣ Forward going high-
momentum beam electron

Suppression

‣ Beam-monitor scintillator as 
Møller Veto

‣ Scintillator Wall bar 
combination
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Scattered Particle Momentum (MeV/c)
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Electron momentum distribution dominated by Møller events
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Møller events

Mott events
Scattering events

of interest

All events have a reaction vertex within the target volume.  

Experiment does not measure the momentum of 
the scattered particle, E(SC2) > 5 MeV.
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Full suppression of Møller events with beam monitor veto
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Møller events
completely suppressed

with a veto signal
from the downstream

beam monitor

Mott events
Scattering events

of interest

All events have a reaction vertex within the target volume.  Events marked in red 
do not have a hit in the downstream beam monitor.

Experiment does not measure the momentum of 
the scattered particle, E(SC2) > 5 MeV.
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Møller events

Mott events
Radiative tail

Simulation gives input to calculations of radiative corrections

simulation determines detection threshold, which is 
an input to the calculations of radiative corrections



Muon decay in flight
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Suppression of background from 
muon decay
‣ Target vertex cut
‣ Time of flight

153 MeV/c muon beam

electron

µ− → e− +νe +νµ

muon decay
vertex

neutrinos
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lengths and measured times 

assuming electron
after muon decay, βe = 1 
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Muon decay in flight — vertex-time difference
Detection of muon decay by path-length 
corrected time-of-flight:

‣ time-of-flight walls 
(tSC, 𝝈 = 50 ps)

‣ upstream beam Cherenkov 
(tBC, 𝝈 = 100 ps)

21

6𝝈

4𝝈 2.2𝝈
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scattering events



High fraction of scattering events are detectable 
without significant background contribution
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Vertex-time difference cut on 
scattering event distribution
Vertex-time difference cut on 
scattering event distribution

μ momentum -σ < tSC - tBC -3σ < tSC - tBC

115 MeV/c Signal 85(2)%
Background 0.0(0.0)%

Signal 100(2)%
Background 0.0(0.0)%

153 MeV/c Signal 87(2)%
Background 0.3(0.1)%

Signal 100(2)%
“Background” 1.6(0.2)%

210 MeV/c Signal 90(3)%
Background 3.1(0.2)%

Signal 100(4)%
Background 63(1)%

• The time-of-flight technique can reduce the muon-decay in flight background 
to < 4% prior to any correction of subtraction.

• In practice, vary cut to optimize final uncertainties.



Direct measurement of the muon decay in flight 
background

In situ measurement of muon decay-
in-flight background from events 
upstream & downstream of the target.
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Summary

• Key physics processes are included in the simulation code.

• Simulation of detector components helped with the 
optimization of the experimental setup.

• Particle vertex and scattering-angel reconstruction is 
sufficient.

• Møller/Bhabha scattering are efficiently suppressed with an 
event-veto from the beam-line monitor detector.

• Muon decay-in-flight background can be removed with 
time-of-flight measurements, direct measurements of the 
background up- and downstream of the target, or through 
empty target measurements.
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