Lecture 10

November 8, 2018 Lab 5 and 6

News

• Lab 3 and 4

- Handed back next week (I hope).

- Lab 5 (Transiting Exoplanets)
 Due: November 8 (today)
- Lab 6 (Color-Magnitude Diagram)
 - Observing starts on Friday
 - Email me your instrumental color-magnitude diagram by Wednesday, November 21
 - Entire lab due: November 29

Photometry in Images

- Correct the image to a uniform, linear response.
 - Dark current and bias level subtraction either
 - done at the telescope with *autodark* subtraction or
 - done by taking separate dark images and subtracting them from the science images later.
 - Need to create an average image of a uniformly illuminated field ("flat field") and divide by it.
 - The mkflatru command.
- Identify your target and comparison stars.
- Measure the brightness of stars in all of the images.

HAT-P-6

WASP-10

HD189733

HAT-P-10/WASP-11

WASP-48

WASP-48

8 pixel radius aperture

Qatar-1

12 pixel radius aperture; trends with position still present

Stellar Photometry in Images

- Steps
 - Correction of image to a uniform, linear response.
 - Use the calibration menu item in *ruphast* to calibrate images one at a time.
 - Identify and determine positions of stars.
 - Measure the brightness of each star.

<u>Color-Magnitude Diagram of an</u> <u>Open Cluster</u>

- Plot stellar color versus brightness for stars in a cluster (a gravitationally bound group of stars that formed at the same time and are at the same distance).
- Determine cluster properties
 - Distance
 - -Age
 - Open star cluster (and globular star clusters) have been our principal tools to understand stellar structure and evolution.

Gaia data release 2. Stars within 25 pc, 50 pc, and 100 pc of the Sun.

Gaia data release 2. Stars in the Hyades and Praesepe clusters.

Gaia data release 2. CMD for 32 open clusters.

M34 CMD WIYN 0.9m telescope Green – proper motion member Red – radial velocity member Blue – photometric member

Meibom et al. 2011, ApJ, 733, 115

Measuring Stellar Brightness

- One Method: Aperture Photometry
 - Add up signal in pixels within a circular aperture centered on the star.
 - Subtract the contribution from the sky, estimated from pixels in a surrounding annulus.
 - Need a "robust" average sky value that removes the effect of any stars present.
 - (Relatively) simple.
 - How big to make the aperture?

M34 V 300 sec

One field approximately centered on M34.

M34 B 300 sec

Same field in B band.

M34a V 300 sec (field with center offset)

Aperture photometry is tedious if there are many stars and fails if stars overlap.

Measuring Stellar Brightness

- Another method of measuring stellar brightness uses the shape of a stellar image the PSF
 - For space telescopes (such as HST), the core (and spikes) are mostly determined by diffraction due to the telescope aperture. This is less variable with time than seeing (though still affected by focus changes).

Stellar "point spread function" (PSF) for the Space Telescope Imaging Spectrograph (O'Dowd & Urry 2005)

• Shape of a stellar image – the "point spread function" (PSF)

The core is caused by a) the bending of light in the rapidly changing inhomogeneous atmosphere – seeing and b) quality of the optical system (how well it is focused, ...). It often varies over a night and within an image.

The origin of the halo is less well understood, but it is probably caused by diffraction from the telescope aperture and scattered light from dust and "micro-ripple" imperfections on surfaces of mirrors, filters, and other optical elements. The halo is constant at least over the several nights of an observing run.

Measuring Stellar Brightness

- PSF-fitting method:
 - Fit a functional form for the PSF plus a constant sky to the pixel values. Volume under the function is a measure of the stellar brightness.
 - Bright pixels in the core have the highest weight in the fit → better S/N.
 - Can measure overlapping stars by simultaneously fitting two PSFs.
 - But greater complexity and higher computational cost.

Stellar Photometry in Images

- Steps
 - Correction of image to a uniform, linear response.
 - Identify and determine positions of stars.
 - Measure the brightness of each star.
 - Do the above two steps with the DAOPHOT software package, which searches for stars in an image and measures their location and brightness.
 - Will measure each image separately since combining images is complex when some clouds are present.

DAOPHOT/ALLSTAR Package

- Finds stars in images and does both aperture and psf-fitting photometry.
- Run in a Unix/Linux terminal window.
- Command line driven programs (i.e., you type in commands), so are less intuitive to use.
- Start-up files initialize parameters.
 - daophot.opt: sets the gain, read noise, and typical
 FWHM of stars (plus other more esoteric things)
 - photo.opt: sets the aperture and sky annulus radii
 - allstar.opt: sets some parameters for the psf-fitting photometry

DAOPHOT – the *attach* command specifies the image to measure

DAOPHOT – the *find* command finds the stars in the image

		ID	# X	Y	Mag	sha	pe paramet	ters		
	0 0				X xterr	n	• •			
E		495	2 3198.0	2672.0	-0.3	-10.0	00 -10.00			
		495	3 3270.0	2672.0	0.0	-10.0	0 -10.00			
		495	4 3298.0	2672.0	-0.2	-10.0	0 -10.00			
		495	5 3423.0	2672.0	-0.3	-10.0	0 -10.00			
		495	6 3559.0	2672.0	-0.2	-10.0	0 -10.00			
		495	7 3575.0	2672.0	-0.4	-10.0	0 -10.00			
		495	8 3693.0	2672.0	-0.2	-10.0				
		495	9 3/61.0 A 0770 A	2672.0	-0.2	-10.0				
		496	V 3778.V 1 9700 A	2072.0	0.0	-10.0		Many sta	rs found	some of
		490	1 3789.V 3 2010 A	2072.0	-0.3	-10.0	-10.00		15 IUuiiu	
		490	5 3033 V 2 3013 V	2072.0	-0.2	-10.0	10 -10.00	which wi	ll turn oi	it to be noise.
		450	0 0000.0	2072.0	v.5	10.0	·····			
				Are	uou happu w	with th	nis? u			
					5 115		9			
	Comm	and: phot								
		File with	aperture	radii	(default pł	noto.or	ot):			
			-1							
	A1	RADIUS OF	APERTURE	1 =	8.00	A2 F	RADIUS OF APE	ERTURE 2 =	0.00	
	A3	RADIUS OF	aperture	3 =	0.00	A4 F	RADIUS OF APE	ERTURE 4 =	0.00	
	A5	RADIUS OF	APERTURE	5 =	0.00	A6 F	RADIUS OF APE	ERTURE 6 =	0.00	
	A7	RADIUS OF	APERTURE	7 =	0.00	A8 F	RADIUS OF APE	ERTURE 8 =	0.00	
	A9	RADIUS OF	APERTURE	9 =	0.00	AA F	RADIUS OF APE	ERTURE 10 =	0.00	
	AB	RADIUS OF	APERIURE	11 =	0.00	AC F	ADIUS OF APE	ERIURE 12 =	0.00	
	15	INNER	SKY RAD	105 =	50.00	05	UUTER SI	KY RADIUS =	60.00	
	PH0>	Are giv	ven the	option	to alter th	e radi	i here, but v	you do not	need to.	
		U		T						
		Input pos	ition fi	le (defa	ault m34v7-	-010.cd	oo): 📂	Use default	t names	
			Output f	ile (de	fault m34v7	7-010.ć	ap): 👕		/	

DAOPHOT – the *phot* command performs aperture photometry

ID # X

37

Ap Mag unc sky level

ID f	$t \Lambda$	I	Ap Mag unc	SKY IC	ever	
9 🔿 🔿			X xterm			
4942	2 2635.00	2672.00	97.999 +- 9.999	27.2		
4943	3 2742.00	2672.00	97.999 +- 9.999	27.6		
4944	1 2758.00	2672.00	97.999 +- 9.999	28.5		
4945	5 2802.00	2672.00	97.999 +- 9.999	27.8		
4946	5 288 0.00	2672.00	97.999 +- 9.999	28.1		
4947	7 2928.00	2672.00	97.999 +- 9.999	27.2		
4948	3 2951.00	2672.00	97.999 +- 9.999	28.6		
4949	3004.00	2672.00	97.999 +- 9.999	27.6		
4950) 3015.00	2672.00	97.999 +- 9.999	27.6		
4951	L 3190.00	2672.00	97.999 +- 9.999	27.8		
4952	2 3198.00	2672.00	97.999 +- 9.999	28.0		
4953	3 3270.00	2672.00	97.999 +- 9.999	27.8		
4954	4 3298.00	2672.00	97.999 +- 9.999	27.4		
4955	5 3423.00	2672.00	97.999 +- 9.999	27.5		
4956	5 3559.00	2672.00	97.999 +- 9.999	28.5		
4957	7 3575.00	2672.00	97.999 +- 9.999	28.9		
4958	3 3693.00	2672.00	97.999 +- 9.999	29.1		
4955	9 3761.00	2672.00	97.999 +- 9.999	27.6		
4960) 3778.00	2672.00	97.999 +- 9.999	28.3		
4963	L 3789.00	2672.00	97.999 +- 9.999	27.6		
4962	2 3819.00	2672.00	97.999 +- 9.999	27.4		
4900	3 3933.00	2672.00	97.999 +- 9.999	28.3		
Estimated magni	itude lim	it (Apertu	ure 1): 16.9 +- 0.4	per sta	ır.	
		•		•		
Command: pick						-
. .	0.1	<i>(</i>) 0 · ·			Pick 30 stars, regardle	ss of
Input	t file na	me (defau.	Lt m34v/-010 ap):		magnitude	
Desired nu	Imper of	stars, fa: _ (defeult	Intest magnitude: 30	,99	magintude.	
Uutput	Tile nam	e (defaul)	t m34V/-VIV.ISt):		la la	

DAOPHOT – *pick* chooses bright, unsaturated stars to determine the psf

0	0	0	
•	0	\bigcirc	

9 🙂 🖤		X xterm							
4950 3015.00	2672.00	97.999 +- 9.999	27.6						
4951 3190.00	2672.00	97.999 +- 9.999	27.8						
4952 3198.00	2672.00	97.999 +- 9.999	28.0						
4953 3270.00	2672.00	97.999 +- 9.999	27.8						
4954 3298.00	2672.00	97.999 +- 9.999	27.4						
4955 3423.00	2672.00	97.999 +- 9.999	27.5						
4956 3559.00	2672.00	97.999 +- 9.999	28.5						
4957 3575.00	2672.00	97.999 +- 9.999	28.9						
4958 3693.00	2672.00	97.999 +- 9.999	29.1						
4959 3761.00	2672.00	97.999 +- 9.999	27.6						
4960 3778.00	2672.00	97.999 +- 9.999	28.3						
4961 3789.00	2672.00	97.999 +- 9.999	27.6						
4962 3819.00	2672.00	97.999 +- 9.999	27.4						
4963 3933.00	2672.00	97.999 +- 9.999	28.3						
Estimated magnitude limit (Aperture 1): 16.9 +- 0.4 per star.									
Command: pick									
Input file name (default m34v7-010.ap): Desired number of stars, faintest magnitude: 30,99 Output file name (default m34v7-010.lst):									
30 suitable candidates were found.									
Command: psf									
File with aperture results (default m34v7-010.ap): File with PSF stars (default m34v7-010.lst): File for the PSE (default m34v7-010.psf):■									
		· _							

DAOPHOT - psf uses the picked stars to determine the psf. It shows a simple plot of each star and you decide whether to use it or not.

•) 🔿 🔿 🛛					X	xterm				
	236	2796	6.85 39	0.97	12.39	91 27.	.6 Bri	ghtest pi	xel:	1749	
						Use	this one	?y			
		ſhi	Paramet	ers				Tries	civ diff	erent func	tional forms
	>> 0.	0475	4.00399	3.8	9406						
	>> 0.	0665	2.54644	2.5	3558	-0.05137		for the	e pst ar	nd chooses	s the one that
	>> 0.	0413	3.54019	3.4	3217	-0.00949		fits be	est. Dit	fferences f	rom the
	>> 0.	0411	3.66591	3.5	5743	-0.00837		functi	onal fo	rm are hai	ndled with a
	>> 0.	0615	3.28475	5 3.1	4228	-0.01441					
	>> 0.	0410	3.62599	3.5	2361	0.648/1	-0.0118	ו look-ז	ip table	e (so any p	ost shape can
								be acc	commo	dated).	
	Profil	e erro	ors:								
		0.11									
	514	0.02	21 1	.802 0	.027	1054	0.042	3969	0.035	461	0.069
	267	0.04	46 1	.100 0	.028	1588	0.030	3821	0.042	1044	0.049
	1426	0.02	25	840 0	.029	1193	0.034	4237	0.049	4647	0.025
	1835		02? 2 7	230 0	.028	1538	0.025	1/9	0.041	236	0.035
	2/20		27 07	23 V 695 A	.135 *	* 1114 1172	0.029	2000	0.034		
	0410	v.v.		035 V	.vz5	1142	V.V01	2705	v.v45		
	Comp	uted	1	.03 r	ows of	,	103 in	the PSF.			
	•										
	File w	ith PS	SF stars	and ne	ighbor	rs = m34v7	7-010.nei				
	c										
	lommar	d: exi	LT								
	Good b	ye.									
	_	-									
	p:										11.

DAOPHOT – *exit* returns to the Unix command line

0	X xterm
р	: allstar
	FITTING RADIUS =8.00CE (CLIPPING EXPONENT) =6.00REDETERMINE CENTROIDS =1.00CR (CLIPPING RANGE) =2.50WATCH PROGRESS =1.00MAXIMUM GROUP SIZE =50.00PERCENT ERROR (in %) =0.75PROFILE ERROR (in %) =5.00IS (INNER SKY RADIUS) =35.00OS (OUTER SKY RADIUS) =50.00
	OPT> (are given the option to change parameters here, but this is unnecessary)
	Input image name: m34v7-010.fits
	m34v7-010
	Picture size: 4008 2672
	File with the PSF (default m34v7-010.psf): Input file (default m34v7-010.ap): File for results (default m34v7-010.als): Name for subtracted image (default m34v7-010s):
	4963 stars. <<
	I = iteration number R = number of stars that remain D = number of stars that disappeared

ALLSTAR – does the psf-fitting photometry

00

I = iteration number

- R = number of stars that remain
- D = number of stars that disappeared

C = number of stars that converged

I	R	D	С	
1	4963	0	0	<<
2	4963	0	0	<<
3	4963	0	0	<<
4	4800	89	74	<<
5	4203	194	566	<<
6	3002	703	1258	<<
7	2148	1436	1379	<<
8	1508	1820	1635	<<
9	1179	2111	1673	<<
10	946	2319	1698	<<
11	702	2537	1724	<<
12	477	2744	1742	<<
13	292	2915	1756	<<
14	131	3063	1769	<<
15	46	3139	1778	<<
16	39	3139	1785	<<
17	29	3139	1795	<<
18	24	3139	1800	<<
19	14	3139	1810	<<
20	14	3139	1810	<<
21	12	3139	1812	<<

ALLSTAR fits all of the stars in the image simultaneously, so overlapping stars are handled correctly (assuming that both stars are in the input list). The solution is done iteratively.

X xterm

Original 7-second, V-band image

Image with the fitted psf's subtracted

Long exposure, V-band image

Fitted psf's subtracted. Note saturated stars are not fitted.

daomatch begins the process of matching stars in the ALLSTAR output files for each image

000	🔀 jedrusial	(@astrolab:~				
m34v180-049.als 60	0	3 1.000	0.000	0.000	1.000	3.
12 1.985 0.00 5 2.000 2.00 WT 1.984952 <	00 0.000 00 0.400 2.000000	0.016 0. 0.500	005			
Frame 2: star 1 2 3 4	5 6					
Frame 1: 1 6 2 - 6 3 6 - 4 5	 - 6 6 -					
m34v180-049.als	0	3 1.000	0.000	0.000	1.000	3.
30 6.941 0.00 11 2.000 2.00 45 >	00 0.000 00 0.400 6	0.021 0. 0.500	005			
Next i	nput file (de	fault EXIT):				
Good bye.						
р: []						1.

Keep entering files until have done all of them for a given filter (V or B)

daomaster finishes the job of matching the stars in the "als" files.

) 🔿 🔿						🛛 🛛 jedru	siak@astrolab:~			
Г	0.54 0.45	0	3	1.000	0.000	0.000	1.000	1.30 0.029	252	2	m34v35-044.als
Ŀ	0.54 0.51	-1	2	1.000	0.000	0.000	1.000	1.36 0.027	272	2	m34v35-045.als
	0.55 0.51	-1	3	1.000	0.000	0.000	1.000	1.53 0.032	281	2	m34v35-046.als
	0.60 0.54	1	2	1.000	0.000	0.000	1.000	3.42 0.046	288	2	m34v180-04/.als
Ŀ	0.60 0.59	0	2	1.000	0.000	0.000	1.000	3.56 0.047	290	2	m34v180-048.als
	0.61 0.57	U	3	1.000	0.000	0.000	1.000	3.56 0.050	289	2	m34v18V-V49.als
	811 stars w	ithin ra	dius	3.000							
		Nei	w mat	.ch-up r	adius (0 to ex	it): 0				
	Transfo	rmations	are	in the	sense	STANDAR	D = fn(OBSERVED).			
				As	sign ne	w star	IDs? n				
				Now, d	o you w	ant					
	A ·	file wit	h mea	n magni	tudes a	nd scat	ter? y				
	Uut A filo	put file	name rraat	derau	itudaa	and ann	ag):				
		with Com nut file	name	eu magn (defau	lt m34v	anu err 7-010 c	ors: y				
	000	A file w	ith r	aw magn	itudes	and err	ors? n				
Ŀ		A file	with	the ne	w trans	formati	ons? n				
Ŀ		A	file	with t	he tran	sfer ta	ble? n				
				Indi	vidual	.COO fi	les? n				
	Simply transfer star IDs? n										
	<u> </u>										
	bood bye.										
	n•edit m34v7	-010.mag									
	p: edit m34v7	-010.cor									
	p:										
	· •										

M34 instrumental (v, b-v) color-magnitude diagram. 1,235 stars