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LAB 6: DAMPED SIMPLE HARMONIC MOTION

Introduction

The main objective of this lab is to understand how damping simple harmonic motion
affects the relationship between force F, position x, velocity v, acceleration a, and period T of a
mass-spring system. Harmonic motion is defined as any motion that can be described by sin and
cos functions. Undamped harmonic motion occurs when there is no frictional force that interferes
with the oscillatory motion of the system so that the amplitude of motion remains unchanged
over time. When frictional forces are small and the damping coefficient y is smaller than the
angular frequency w, motion is considered underdamped and the amplitude of oscillation decays
exponentially.

Experimental Method

The experimental setup (Figure 1) consisted of a ring stand with a spring and mass holder
attached to a force transducer. The spring-mass system hung directly above a motion detector on
the ground. The force transducer and motion detector were connected to the LabPro interface
that transmits the position, velocity, acceleration, and force data to a computer. The computer
program Logger Pro recorded the data.
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Figure 1: Diagram of experimental setup
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We first aimed to determine the spring constant & using two methods. To do so, we
assumed that the mass support was “massless”, so that the spring with only the mass support
attached is at equilibrium. For the first method, we measured the initial length of the spring in
equilibrium position and recorded this value (Table 1). We then incrementally added 100g
masses to the mass support, measuring the new length of the spring after the addition of each
mass and recording it (Table 1). Using the formula F = —kx, we calculated the spring constant &
for each mass. We averaged these values to get the mean spring constant.

We concurrently determined the spring constant & using the measurements given by the
force transducer and motion detector. We first recorded the resting position of the mass support
gi\)en via LoggerPro. After each weight was added to the mass support, we recorded the
corresponding force and displacement (Table 2). Once again, using F = —kx, we calculated the
spring constant k for each new mass and averaged the values to get the mean spring constant.

After configuring LoggerPro to record a 10 second run at a rate of 10 samples per second,
we placed 500 g on the mass support. We pulled the mass down slightly and released it, allowing
it to oscillate for a few periods before starting data collection. From the cotresponding graphs of
position versus time, we estimated the period 7 by locating various points where the curve
passed through zero, measuring the distance between each of them, and taking the average of the
measurements. We then calculated the relative phases of oscillation of velocity and acceleration
relative to x.

Finally, to study damping effects in underdamped oscillation, we placed a paper plate
under the weights. We configured the sampling rate to be 20 samples per second for a 15 second
run and repeated the previous steps for data collection.

Results and Discussion

We calculated spring constant k to be 23.6+3.0 N/m by manually measuring the spring’s

extension x using a meter stick and solving for & using the formula k = — 5 Since we added a

100 g'mass after each measurement, we calculated the change in force between measurements to
m

be F = ma = (0.1kg) * (9.8 —S—) = (.98 N. Our measurements are shown below in Table 1:

Table 1:
Mass added (g) | Length (m) Displacement x ‘Change in Spring constant
(m) Force F (N) k (N/m)
0 (equilibrium 0.139 N/A N/A N/A
position)
100 0.187 0.048 0.98 20.4
200 0.224 0.037 098 26.5




300 0.265 0.041 0.98 239

Average spring constant k 23.6

Table 1: Measurements of spring extension.
Since the error in the force measurement 6F is 0.049 N/m (acceleration a is a constant and dm =
1 g =0.005 kg) and the error in the extension measurement dx is 0.5 cm = 0.005 m, the etror in
the spring constant calculation dk is:

SF\?  /8x\ 0.0098\*  /0.005\° 1
Ol = e » j(’?) * (_x'> - 23'6\/( 0.98 ) * <0.042> =30N/m
Now, using LoggerPro data, we recalculated the spring constant to be 21.6+0.2 N/m. Our
measurements are shown in Table 2 below.

Table 2:
Mass added Distance from | Displacement | Force (N) Change Spring
(2 motion sensor | x (m) in Force | constantk
(m) F(N) (N/m)

0 (equilibrium | 1.235 N/A 1.398 N/A N/A

position)

100 1.190 0.045 2.364 0.966 21.5

200 1.143 0.047 3.321 0.957 20.4

300 1.099 0.044 4.335 1.014 23.0

Average spring constant k 216 4
\__ﬁ,_/

Table 2: Measurements of spring extension and force using the force and motion sensors.

Since the error in the force measurement 5F is 0.0005 N/m and the error in the extension
measurement dx is 0.0005 N/m, the error in the spring constant calculation Jk is:

st =+ J(5) () =26 (22081 (29%5)" - 02w +
=k % e -_— = . = U,
F x 098/ " \0.042 /m

k is more precisely measured using the LoggerPro measurements than the manual measurements.




We calculated our error in the measurement k to be 3.0 N/m for the method where we
measured displacement with a meter stick and 0.2 N/m for the method where we used LoggerPro
data for the force and displacement measurements.

Figure 2:
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Figure 2: Position vs time for a 500 g oscillating mass. ~—— /** 0/; ca TL
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Figure 3: Velocity vs time for a 500 g oscillating mass.

Figure 4:



From Figure 2, we calculated the experimental period T to be 1.063 s. The measurements

Acceleration vs. Time
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Figure 4: Acceleration vs time for a 500 g oscillating mass.

we used are shown in Table 3 below.

Table 3:

Time at peak (s) Time difference between peaks
®)

2.741 N/A

3.803 1.062

4.868 1.065

5.933 1.065

6.992 1.059

Period (average 1.063

peak to peak)

Table 3: Peak to peak measurements for calculating period.
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We do not worry about the mass of the spring, as the entire spring does not move with the
fk‘ system, is part of the system at rest, and has a negligible mass compared to the rest of the
system’s elements (masses and weight holder).

We calculated the period 7 to be 1.063 s off the graph of displacement vs. time (Figure
2). Since the force registered by the force transducer while the mass holder was at rest was 1.398

N, we calculated the mass of the weight holder to be m = S = %@ = 0.142 kg. Using the
equation T = 2m/m/k, we calculated the theoretical period to be 27 25+9242k9_1 082 5. Our
R S et «f 21.6 N/m p

experimental period (from the graph) has a 1.9% difference from the theoretical period
(calculated above), so these two values agree with ofie another.

Next, we calculated the relative phases of oscillation using the formula Ap = 27 * ATE , Where At

is the time when the quantity in question (x, v, or a) first passes through 0. We determined these
values from the graphs of Figure 2, 3 and 4. We used the experimental period 7=1.063 s.

Position:
At 0.590 i od
Ad = 2n *—T-— = 27 * 1063 = 3.487K V&oﬁt@&s [V" }
Velocity:
Ad =2 At 2 0521 1.897 5 veeol
= * — = * = 1.
¢ =21 = 2m 1083 X
Acceleration:
At 0.590 o@
Ap = 2m x = = 2m * Tz 3.487 %

Position and acceleration have the same phase shift; however, their graphs are perfectly out of

phase (Figures 2 and 4). Since force is a function of mass and acceleration and the mass remains

constant, I expect that position and force will also be entirely out of phase. This is evident on the
plot of force vs position (Figure 5), as force is inversely related to position.




Figure S:

Force vs Position

1.0
ETA

g
.
*y

06 -0.04 -0.02 02080 0 g 302 0.p4

N

For'ce {N)
&

Position (m)
Figure 5: Force vs position graph.
Next, we constructed a phase space plot of velocity vs, position (Figure 6). The orbit is elliptical.
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Figure 6: Velocity vs position phase space plot.

Using the formulas x = A * cos(wt + @) and v = Aw * cos (a)t + ¢+ g) and knowing that our

position and velocity at rest are xo m and vo m/s respectively, I calculated the theoretical
expression for the shape of this orbit to be:




(=2 w-m) _

2z T ZAw)?

Since the position of the mass is not changing and neither is its velocity, the phase space

orbit would simply be a point.

We then observed the effects of damping on oscillatory motion by placing a paper plate on the
weight holder and recording another run. The corrected damping (adjusted to oscillate around the
equilibrium position) is plotted below in Figure 7.
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Figure 7: Position vs time for a damped 500 g oscillating mass.

The natural log of the amplitude vs. time is a straight line (Figure 8), as amplitude decays
exponentially in underdamped oscillatory motion. We constructed a linear least square fit using

initial max amplitude 4p=1.21 m to find a best-fitting value of 0.0015 for the damping constant y

(Figure 9). Air resistance is turbulent as opposed to viscous, since air has a very low viscosity
but can move fast.

Figure 8:
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Figure 8: Natural log of the absolute value of position vs. time for a damped 500 g oscillating mass.
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Figure 9: Linear least squares fit plotted over the uncorrected position vs. time. Initial amplitude 4 = 1.21 m and
damping coefficient y = 0.0015. &= ]9
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Since we only used the first half (x = Ae~"?) of the equation x = Ae~"* cos(wt + ¢) to
estimate v, we find that y = %(ln G)) We took dt to be 0, 4 to be 1.21 m, and x to be 0.35 m
(the position where initial amplitude 4 occurs). Therefore, we found 8y = 7.7 1075, & o '(E )

(V * \/(%)2 + (%4)2> <0 0015 0003055 4 (0102015)2> J'
" 1 ) 0.35 =7.7%1075
: 121
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The resultant phase space plot for damped motion is an inward spiral (Figure 10). As motion is
damped, velocity decreases and so does amplitude, so they become smaller relative to one
another and spiral inward.

Figure 10:
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Figure 10: Velocity vs position phase space plot.

Conclusion

By measuring the mass-spring system’s undamped motion using LoggerPro, we were
able to calculate the spring constant of the system & to be 21.6 N/m?. From here, we were able to
measure the period of oscillation of an undamped 500 g mass to within 1.9% of the theoretical
period. We found that acceleration and force are out of phase with position in undamped motion.
Furthermore, in examining underdamped motion of the same 500 g mass, we found that the
amplitude of oscillation decayed exponentially with a damping constant y of 0.0015+7.7*%103,




