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0.9 show three and two points, respectively, because of the more complex mo-
tion. The number of points » on the Poincaré section here shows that the new
period T = Tyn/m, where T = 27/w is the period of the driven force and m is
an integer (m = 2 for the F = 0.5 plot and m = 1 for the F = 0.9 plot). The
chaotic motions for F = 0.6, 0.7, and 1.0 display the complicated variation of
points expected for chaotic motion with a period T— co. The Poincaré sections
are also rich in structure for chaotic motion.

On three occasions thus far (Figures 45, 47, and 4-11), we have pointed out
attractors, a set of points (or a point) on which the motion converges for dissipa-
tive systems. The regions traversed in phase space are strictly bounded when
there is an attractor. In chaotic motion, nearby trajectories in phase space are
continually diverging from one another but must eventually return to the attrac-
tor. Because the attractors in these chaotic motions, called strange or chaotic at-
tractors, are necessarily bounded in phase space, the attractors must fold back
into the nearby regions of phase space. Strange attractors create intricate pat-
terns, because the folding and stretching of the trajectories must occur such that
no trajectory in phase space intersects, which is ruled out by the deterministic
dyamical motion. The Poincaré sections of Figure 4-19 reveal the folded, layered
structure of the attractors. Chaotic attractors are fractals, but space does not per-
mit further discussion of this extremely interesting phenomenon.

4.7 Mapping

If we use 7 to denote the time sequence of a system and x to denote a physical
observable of the system, we can describe the progression of a nonlinear system
at a particular moment by investigating how the (n + 1)th state (or iterate) de-
pends on the nth state. An example of such a simple, nonlinear bchavior is
%41 = (2%, + 3)% ([This relationship, x,.; = f(x,), is called mapping and is
often used to describe the progression of the system. The Poincaré section plots
previously discussed are examples of two-dimensional maps. A physical example
appropriate for mapping might be the temperature of the space shuttle orbiter
tiles while the shuttle descends through the atmosphere. After the orbiter has
been on the ground for some time, the temperature T, is the same as T, but
this was not true while the shuttle plummeted through the atmosphere from its
earth orbit. Modeling the tile temperatures correctly with a mathematical model
is difficult, and linear assumptions are often first assumed in such calculations
with nonlinear terms added to make more realistic calculations.

_We can write a difference equation using f(a, x,) where x, is restricted to a real

Logistic epeafes.

number in the interval (0, 1) between 0 and 1, and a is a model-dependent

parameter.

Xp4l = f(a’ xﬂ) (4'44)

—-l—_-'_———_
The function f(a, »,) generates the value of x,., from x,, and the collection
of points generated is said to be a map of the function itself. The equations,
which are often nonlinear, are amenable to numerical solution by iteration,
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starting with x;. We will restrict ourselves here to one-dimensional maps, but
two-dimensional (and higher order) equations are possible.
Mapping can best be understood by looking at an example. Let us consider

the “logisuc _equation, a simple one-dimensional equation given by

L Slexn) =ax(d —x) (4.45)
so that the iterative equation becomes
Xpe1 = ax,(1 — x,) (4.46)

We follow the discussion of Bessoir and Wolf (Be91) who use_the logistic equa-
tion for a biological application example of studying the population growth of
fish in a pond, where the pond is well isolated from external effects such as
weather. The iterations, or n values, represent the annual fish population, where
x, is the number of fish in the pond at the beginning of the first year of the
study. If x, is small, the fish population may grow rapidly in the early years be-
cause of available resources, but overpopulation may eventually deplete the
number of fish. The population x,, is scaled so that its value fits in the interval (0, 1)
between 0 and 1. The factor @ is a model-dependent parameter representing av-
erage effects of environmental factors (e.g., fishermen, floods, drought, preda-
tors) that may affect the fish. The factor & may be varied as desired in the study,
but experience shows that a should be limited in this example to the interval (0, 4)
to prevent the fish population from becoming negative or infinite.

The results of the logistic equation are most easily observed by graphical

meanma map called the logistic map._ The iteration x,.; is plotted versus x, in
Figure 4-2Ia for a value of a = 9.0. Starting with an initial value x, on the hori-
zontal (x,) axis, we move up until we intersect with the curve x,., = 2x,(1 — x,),
and then we move to the left where we find x, on the vertical axis (x,4+,). We
then stars with this value of x, on the horizontal axis and repeat the process to
find x5 on_the vertical axis. Jf we do this for a few iterations, we converge on the
nd the fish population stabilizes at half its maximunl.. We arrive at
\ this Tesult independenf oF our initial v e of x; as long asitis not 0 or 1|

An easier way to follow the process is to add the 457 line, x4, = x,, to the
same graph. Then after initially intersecting the curve from x,, one moves hori-
zontally to intersect with the 45° line to find x, and then moves up vertically to
find the next iterative value of xs. This process can go on and reach the same re-
sult as in Figure 4-21a. We show the process in Figure 4-21b to indicate that this
method is easier to use than the one without the 45° line.

In practice, we want to study the behavior of the system when the model pa-

rameter @ Is varied.In the present case, for values of a tess than 3.0, stable pop-

mmgure 4-992). The solutions follow a square spiral path to
the central, final value. For values of a just above 3.0, more than one solution _

for the fish population occurs (Figure 4-22b). The solutions follow a path simi-

ar to the square spiral, which converges to the two points at which the square
~Intersects the “iteration line,” rather than to a single point. Such a change in
the number of sotutions to an equation, when a parameter such as « is varied, is

called/a biturcatio
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1€ re-
it this i
i We obtain a more general view of the global picture by plotting a bifurcation
el pa- X ( o() diagram, which consists of x,, determined after many iterations to avoid initial ef-
pop- . ‘Tects, plotted as a function of the model parameter @. Many new interesting ef-
ith to “Tects emerge indicating regions and windows of stability as well as those of
ution chaotic dynamics. We show the bifurcation diagram in Figure 4-23 for the logis-
simi- tic equation over the range of a values from 2.8 to 4.0. For the value of @ = 2.9
Juare gl‘ N shown in Figure 4-22a, we observe that after a few iterations, a stable configura-
ge in @704 tion for x = 0.655 results. An N cycle is an orbit that returns to its original posi-
ed, is - tion after N iterations, that is, xy.; = x;. The period for @ = 2.9 is then a one
' aC - . cycle. For a = 3.1 (Figure 4-22b), the value of x oscillates between 0.558 and

.
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FIGURE 422 Logistic equation map for a values of 2.9 and 3.1, indicating stable
populations in (a) and multiple possible solutions for a > 3.0 in (b).

0.765 (two cycle) after a few iterations evolve. The bifurcation occuring at 3.0 is
alled a pitchfork bifurcati e of the obvidus shape of the diagram caused
mﬁhﬁienod doubling effect has x,,, = x,. At a =
3.45, the two-cycle bifurcation evolves into a four cycle, and the b1furcatlon and
penod doubling continues up to an infinite number of cycles near @ = 3.57.

X = 0.654

Chaos 6ccurs for many of the a values between 3.57 and 4.0, but there are still
windows of periodic motion, with an especially wide window around 3.84. A re-
ally interesting behavior occurs for @ = 3.82831 (Problem 4-11). An apparent
periodic cycle of 3 years seems to occur for several periods, but then it suddenly
violently changes for a few years, and then returns again to the 3-year cycle. This
intermittent behavior could certainly prove devastating to a biological study oper-
ating over several years that suddenly turns chaotic without apparent reason.
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FIGURE 4-23 Bifurcation diagram for the logistic equation map.

a
EXAMPLE 4.2

Let Aa, = a, — @,_; be the width betw=en successive period doubling bifurca-
tions of the logistic map that we have been discussing. For example, from
Figure 423, we let a; = 3.0 where the first bifurcation occurs and ay =
3.449490 where the next one occurs. Let §, be defined as the ratio

3y

A /
_ 2% (4.47)

n =
Aan+1

and let 8, — 8 as n— oo. Find §,, for the first few bifurcations and the limit 8.

Solution. Although we could program this numerical calculation with a com-
puter, we will use one of the commercially available software programs (Be91)to
work this example. We make a table of the @, values using the computer pro-
gram, find Aa,, and then determine a few values of a,,.

n @, Aa 8,

1 3.0 /

2 $.449490 0.449490 “ 4515 )
3 3.544090 0.094600 . 46562 |
4 3.564407 0.020317 46684
5 3.568759 0.004352 % /'

w 3.5699456 46692

As a, approaches the limit 3.5699456, the number of period doublings
approaches infinity, and the ratio 8, called Feigenbaum’s number, approaches
4.669202. This result was first found by Mitchell Feigenbaum in the 1970s, and
he found that the limit 8 was a universal property of the period doubling route
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markable

to chaos when the function f(e, x) has a quadratic maximum. Itisare
itis also

fact that this universality is not confined to one-dimensional mappings;
true for two-dimensional maps and has been confirmed for several cases.
Feigenbaum claims to have found this result using a programmable hand calcu-
lator. The calculation obviously has to be carried to many significant figures to
establish its accuracy, and such a calculation was not possible before such calcu-

lators (or computers) were available.

4.8 Chaos Identification

In our driven and damped pendulum, we found that chaotic motion occurs for
some values of the parameters, but not for others. What are the characteristics of
chaos and how can we identify them? Chaos does not represent periodic motion,
and its limiting motion will not be periodic. Chaos can generally be described as
having a sensitive dependence on initial conditions. We can demonstrate this ef-

fect by the following example.

[ paveess |

Consider the nonlinear relation X, = Sfla, x,) = ax,(1 — x,2).Leta =25
and make two numerical calculations with initial x, values of 0.700000000 and

0.700000001. Plot the results and find the iteration n where the solutions have
clearly diverged.
Solution. The iterative equation that we are considering is

e = axy(1 — 2,7 (4.48)

We perform a short numeric calculation and plot the results of iterations for
the two initial values on the same graph. The result is shown in Figure 4-24
where there is no observed difference for x,., until n reaches at least 30. By
n = 39, the difference in the two results is marked, despite the original values
differing by only 1 part in 10,

If the computations are made without error, and the difference between it-
erated values doubled on the average for each iteration, then there will be an

exponential increase such as

on = en!n?

;rhf}:e nis the number of iterations undergone. For the iterates to be separated b
y the order of unity (the size of the attractor), we will have E
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