Physics 326

8/30/21

DISTRIBUTION OF THE MEAN

PURPOSE


To understand averages of data measurements, i.e. what are their distribution functions and their relationship to error analysis.

HOMEWORK


Read Taylor, "An Introduction to Error Analysis", Chapters 4, 5, 10, 11. Do problems 4.5, 4.6, 5.21, 5.36, 11.10, 11.20.

INTRODUCTION

As discussed in the 1st part of this lab, repeated measurements of a physical quantity will often not each give the same value. Rather, there will be a distribution of measured values with a width about some central value. In order to report a measurement of this physical quantity we take the mean of a set of repeated measurements and calculate the uncertainty from the formula for 
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 below.  In this lab, we look at the distribution of the mean in order to understand this method.


The technique used will be the same as that in the previous lab, where we recorded the counts of decays of radioactive nuclei. We will use the relatively long counting interval, where the distribution of the data was Gaussian, although this condition does not affect the distribution of the mean that we investigate.  Thus, we will obtain a collection of measurements of N, the counts recorded in one time interval, for one run of n intervals. The mean of these n values of N, which we call [image: image3.png](N)



 or [image: image5.png]


, can be used to calculate the mean rate of decay of the radioactive nuclei.


We then repeat the measurement in order to obtain a set of runs and therefore a set of means. We will plot histogram of these means in order to study their distribution and compare the distribution to a Gaussian.

THEORY

A. Statistical Definitions


Your textbook gives a thorough discussion of the calculation and use of means.  Here we will only give a brief summary of some important points. The mean and variance of a parent distribution in random variable x are defined by:
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From a limited set of measurements (n not infinite) we can estimate from the average value of the xi. Likewise, the variance is estimated from the “sample” of measurements and   also uses the average value of the xi.
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The factor (n-1) gives a better approximation of the variance than n because we are using only an estimate of  rather than its actual value. The square root of the variance is called the standard deviation.


For a Gaussian distribution there is a 68% chance that a single measurement will fall between 

 and 
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. There is a 95.4% chance that it will fall within 2 of  and a 99.7% chance that it will fall within 3 of .


Next we would like to know how close our estimate of  is to the true value, i.e. how close 

 is to . This is not given by x, which is characteristic of the parent distribution (x), but rather by 




where n measurements form the sample; this is characteristic of the distribution of the mean, 

. Thus, as more measurements are made the uncertainty on the estimate of the mean decreases, but only as the square root of the number of measurements.

B. Distribution Functions


The most commonly encountered distribution is the normal or Gaussian distribution






(1)

This curve is peaked at x =  and is symmetric about .  For a set of measurements, 

 is a good estimate of .  The reason PG(x) is encountered so often is given by the central limit theorem which (very roughly) states that if the fluctuations in the measured value of x are caused by several (K) independent factors each with its own (not necessarily normal) distribution, then in the limit that K becomes large the overall distribution approaches a normal distribution. This central limit theorem is the reason that the distribution of the data we take need not be Gaussian in order for the distribution of the mean of the data to be Gaussian.


It may be of use to remember that while our distribution of N in one run is nicely approximated by a Gaussian, this distribution is derived from a Poisson so its expected standard deviation is related to its expected mean, 
[image: image9.wmf]  

s

=

m

.

APPARATUS
Radioactive source (5 mC Cs 137)

Geiger tube

Electronic counter

LabPro Interface

Computer

EXPERIMENT

In this experiment you will measure the activity of a radioactive 137Cs  source.  The half-life of the 137Cs  (30 yr.) is long compared to the length of the experiment, so that its activity can be considered constant. You will use a computer to acquire data on the sample's activity and then compare the data to the theoretical Gaussian and Poisson distributions in order to understand the role that distribution functions play in your data.


The nuclear decay is detected by a Geiger tube.  Each time a gamma or beta ray from a decaying nucleus enters the Geiger tube a current pulse is generated. The tube is connected to a counter circuit that converts it into a 5 V, 1 ms-wide voltage pulse which is available at the phone jack on the back of the counter. The counter also counts the pulses and displays the count on the front panel. However, you will not use this feature. Instead the voltage pulse from the counter is fed into a LabPro interface. The LabPro interface transmits the decay data to the computer through its input port. Using the program LOGGER PRO you will repeatedly record the number of counts in a chosen time interval (the time interval can be entered in the computer) and make a plot of the distribution of counts about the average value.  You will then export the data to MATLAB, Origin (recommended) or Excel to compare to the theoretical distribution functions and plot your results.

PROCEDURE

This is a difficult and long experiment. To understand what’s done, you must fully understand the theory before watching the video experiment and analyzing the data.


A.  The Geiger tube should be connected to the BNC connector on the back of the counter, and the DIG/SONIC1 input of the LabPro interface to the jack on the back of the counter.  The LabPro interface is connected to the serial port of the computer.


B.  Make sure the counter is turned on. (The LabPro interface is always on.) Place the radioactive source under the Geiger tube. 

Use the program LOGGER PRO to record the count (decay) rate of the source. To set up the program, see the Logger Pro appendix. Choose suitable values for Collection LENGTH and count interval(SAMPLING RATE). Click button COLLECT to collect data. To save your data, choose FILE: EXPORT DATA AS TEXT … (not SAVE). 

The count rate in a given interval is the number of counts divided by the count interval. The rate you will observe depends on how close the source is to the tube.  Adjust the distance so that the count rate is less than but near 100 counts/second.  [The reason for this is that the counter generates 1 ms wide pulses which the computer counts.  If two nuclei decay within 1 ms of each other, the computer will only record one. If the count rate approaches 1000 cps, you will lose many counts due to this dead time and your data will be distorted.]

You will now do a series of “runs” each of which measures the decay counts N in a set of n consecutive intervals making up the total collection time of the run. The set of decay counts N constitute measurements of the unknown true count N0, and decay rates R =N/t constitute measurements of the unknown true rate R0 (t is the time interval of one measurement of N).


C. We start by studying the distribution of N in one run. This is a repeat of part of the previous lab. Be sure not to move the Cs source relative to the Geiger counter between measurements.  Using LOGGER PRO, set the measuring interval to 1/2 second and measure N for a run time of 30 seconds.  This gives you n = 60 measurements of N. Record 

, the average value of N, and the standard deviation, , which are both calculated by LOGGER PRO (click the STAT button).  You are trying to determine R0 = N0/t, the true value of the decay rate.  Your best estimate of R0 is 

/t, with a standard deviation of /t/√n  Report this best estimate and uncertainty.

The distribution of N in the run is expected to be Gaussian. To test this prediction, plot a histogram of the obtained values of N using a bin width of 1 using MATLAB (see the MATLAB hints in the appendix at the end), Origin (recommended) or Excel. To load the data saved from LOGGER PRO, see also the MATLAB hints. Does the histogram resemble a Gaussian curve centered on 

? Is the standard deviation as expected?


D. Now let us study the distribution of 

 in a set of runs. In the previous section, you reported the best estimate of the counting rate using the standard deviation of the mean, /√n = /√60. The significance of this standard deviation is that if another 30 s run is done, there is a 68% probability that the newly measured 

 will fall in the range No - /√60 and No + /√60, where No is estimated by the original value of 

 and  by N. To test this prediction, repeat the 30 s experiment 20 times, recording 

 and N each time. 
Plot a histogram of the obtained values of 

 (not the values of N as above), first using a small bin width, then using a “coarse” bin width of 2/√60, with the bins centered on the average value of

.  Does the coarse histogram verify the prediction?  Now that you have done the experiment 20 more times, what is your best estimate of Ro and your estimated error in this estimate? How would your results compare with what you expect to obtain, if you did one 10-minute long experiment, in which you record N every 1/2 s? You did this in the previous lab (you can repeat this run here again). Plot the expected Gaussian distribution on your small bin histogram. Make sure to answer the above questions in your lab report.

E.  Next we study the variation in mean and standard deviation of the mean as the run length (or sample size) varies.  With LOGGER PRO still set for a measuring interval of 1/2 s and without moving the sample from its location in part C, measure N for run times T = 10 min, 5 min, 2 min, 1 min, 30 s, 15 s, 8 s, 4 s, 2 s, and 1s.  
For each run time T determine 

 and . [Do the 10-minute run last and save the data since you will use it in the next part.] Since the measuring interval t =1/2 s, for each run time T, the number of points taken is n = T/t. Notice that apart from fluctuations, the value of  does not change as n increases.  The standard deviation of the mean /√n, however, will decrease.  Using MATLAB, Origin (recommended) or Excel make a plot of 

 vs log(n).  Put vertical error bars equal to ± /√n on each plotted value of 

.  Draw a dotted horizontal line on the graph through 

 for the 10-minute run. Take this as your best estimate of the true value N0. Do any of the other measurements lie more than one standard deviation away from this value (i.e. does the dotted line pass through the error bar of each measurement)?  How many would you expect to fall more than one standard deviation away?


F. In your lab report, write up each section (C-E) separately in a manner complete enough, so that your results can be followed by someone who does not have a copy of this lab handout. Give a description of the purpose of the section, describe the procedure, list the data in a table, describe the analysis and give conclusions.  Graphs and tables should be numbered and referred to in the text (i.e. "see Figure 4" or “see Table 3”, not "see one of the attached plots", etc.) Make sure to answer all questions.

HINTS FOR USING MATLAB

Read the help information on commands given in these hints.

To import a Logger Pro text file of exported data (first method):


Select the file in the Matlab directory listing window,


Right click on the file

· Import data …

· Next>

· Create vectors from each column using column names

· Finish

To import a Logger Pro text file of exported data (second method):


Use command importdata(filename).

Look at help importdata for example use.


This method is useful in a . m file that has “clear all”.

To histogram Counts in bins of 1 between 25 and 60:

· x = 25: 1: 60;

· hist( Counts, x);

· Read the help on “hist” to obtain the counts in, and centers of, bins.

To histogram Counts in bins of 2*sigma centered on Nmean

· x = (Nmean – 6*sigma): (2*sigma): (Nmean + 6*sigma);

· hist( Counts, x);

For semilog plots of data with errorbars, use the errorbar() and log10() functions, e.g.

· X = log10( n)

· E = sigma./sqrt( n)

· errorbar( X, Nbar, E, ‘o’)

· Unfortunately, the semilogx() function does not plot errorbars, and the errorbar function cannot do log axes.  A combination of both using hold almost works but not quite.

For plotting a straight line on the errorbar() plot, note this convenient construction for making an array with all values the same

· 45.3*ones( size( Nbar) );

For printing data neatly, look the help example for the command fprintf().

HINTS FOR USING LOGGER PRO

To setup the program, go to:


Menu EXPERIMENT

· CONNECT INTERFACE

· CONNECT ON PORT: select COM1


Button LABPRO

· Drag RADIATION RM-BTD to DIG/SONIC1 box

· CLOSE


Menu EXPERIMENT

· DATA COLLECTION …

· Tab COLLECTION

· LENGTH 30 seconds

· Sample at Time Zero: off

· SAMPLING RATE 0.5 secs/sample

· DONE

To collect data, click button COLLECT.

To export data, go to:


Menu FILE

· EXPORT DATA AS TEXT.
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