
THEORY OF
RANDOM MAGNETS

After olmost a decade of intense research on their unusual
phases and even more unusual dynamical behavior, random
magnets have emerged as prototypes for a wide variety of
systems with frozen-in disorder.

Daniel S. Fisher, Geoffrey M. Grinsrein and Anil Khurana

Much of the enormous increase in our understanding of
collective phenomena during the past few decades has
arisen from the study of magnetic systems. The formula-
tion of concepts such as universality, broken symmetry,
and scaling near continuous phase transitions, as well as
the development of the powerful ideas of the renormaliza-
tion group, have been strongly influenced by research in
magnetism. This is due in part to the availability of a host
of experimentally accessible magnetic systems, and in
part to the remarkable fact that simple models of
magnetism capture the essential physics of the phases and
ordering transitions in more complicated systems.

Until relatively recently, study of the collective
behavior of magnets and other condensed matter systems
has centered largely on ideal pure materials, such as
perfect crystals. Quenched, or frozen-in, structural disor-
der is so ubiquitous, however, that it affects the properties
of virtually all experimental systems to some degree.
Experimentalists are often driven to elaborate lengths to
reduce the randomness in their samples to negligible
levels. Only in the past ten years or so has widespread ap-
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preciation for the fascinating phenomena caused by
disorder itself developed in the condensed matter commu-
nity. No longer denigrated as "dirt," "junk" or an
unavoidable nuisance, randomness and its consequences
have become the objects of intense study.

Disordered magnets have emerged as prototypes for
collective phenomena in systems with quenched disorder.
Again, this is a result of the simplicity of magnetic models
and the existence of many convenient experimental
realizations, some of which have almost ideal, homoge-
neous randomness. Ideas from the study of random
magnets have already been applied to structural phase
transitions and charge-density waves in random alloys, to
the melting of intercalates, to dirty superconductors, to
fluids and superfluids in porous media and to adsorption
and wetting on disordered surfaces. The renormalization
group, conceived by K. G. Wilson to handle problems
involving a broad range of length and time scales,1
provides, as it does for pure systems, the unifying
framework for the understanding of this marvelously
diverse class of random systems.

In this article we summarize current understanding
of the phases and phase transitions of random magnets,
comparing and contrasting them with conventional, pure
magnets. We first briefly review the equilibrium phases
and phase transitions of pure magnets, emphasizing the
role of symmetries and the spatial dimensionality. Identi-
fying three main classes of disordered magnets—random
exchange, random field and spin glass—we then consider
the central issues connected with their equilibrium
properties, such as the existence and nature of their
ordered phases. We will see that for spin glasses, a
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Droplet of overturned spins (white)
in a putative ferromagnetic (up)
ground state of the random-field
Ising magnet. A frozen-in magnetic
field acts at each site in the magnet;
the field points up on the blue sites
and down on the green sites. The
configuration with the overturned
droplet can have lower energy than
that of the wholly ferromagnetic up
configuration because the droplet
occurs in a region in which the
random fields point predominantly
down. Y. Imry and S.-k. Ma
estimated the probability of
occurrence of such droplets and
concluded that the ferromagnetic
state is unstable with respect to the
formation of large droplets in fewer
than 2 dimensions even at T = 0.

surprising degree of controversy still surrounds these
questions. Finally we turn to nonequilibrium effects,
which distinguish random magnets strikingly from their
pure counterparts. The existence of a rather sharp
"freezing" temperature, below which the system responds
extremely slowly to changes in external conditions, is a
dramatic signature of quenched randomness on the
ordering process. Below this temperature, many random
systems are simply unable to achieve equilibrium in any
reasonable time and so show history-dependent behavior.
We will argue that in random magnets, unlike in pure
systems, such nonequilibrium manifestations are often
inextricably linked to equilibrium collective phenomena.
This necessitates a refinement of such common notions as
equilibrium states and metastability.

Pure magnets
We focus on the simplest magnetic models, those consist-
ing of Ising spins, S,, which can only point "up" (S, = + 1)
or "down" (St = — 1). The basic Ising Hamiltonian
consists of exchange interactions JtJ between nearest-
neighbor pairs of spins (i,j) on a hypercubic lattice in d
spatial dimensions:

H = - (1)

This Hamiltonian exhibits an obvious, global spin-flip
symmetry: The energy is invariant under a simultaneous
change of sign of all the spins.

In a pure Ising ferromagnet all the exchange ini erac-
tions have the same value J. Such a system has two
phases: At temperatures large compared with J, the

entropy dominates over the energy and the spins fluctuate
almost independently.1 The global spin-flip symmetry is
preserved in this, the paramagnetic phase, each spin being
up on average as often as it is down. Correlations between
two spins separated by a distance r decay like e r / f ,
where £ is a characteristic correlation length. Conversely,
at low temperatures, the energy dominates over the
entropy and the spins are almost all aligned, either in the
up or down direction. In this, the ferromagnetic phase,
then, there are two equivalent equilibrium states—"up"
and "down"—related to each other by the spin-flip
symmetry. In choosing one of these states over the other
the system spontaneously breaks this symmetry, and each
spin develops a nonzero expectation value (S, >, which
indicates that in equilibrium it spends more time pointing
up, for example, than down. (Here <. . . > denotes an
average over very long times.) This "spontaneous magnet-
ization density," m = <S, >, vanishes in the symmetric,
high-temperature phase and therefore serves as an order
parameter that characterizes the broken-symmetry, or
ordered, phase. In the ordered phase the correlation
between two spins approaches the non-zero value mz as the
distance between them goes to infinity. This property is
called long-range order. The transition between the two
phases occurs at a critical temperature T"c of order J, at
which m vanishes when the system is heated from low
temperatures. In the pure Ising model of equation 1, £
diverges and m vanishes algebraically at Tc, a behavior
characteristic of so-called continuous phase transitions.

This simple intuitive picture of the phases of the pure
Ising ferromagnet is correct for all dimensions d > 1. In
one dimension, the fact that each spin is connected to the
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Frustration in spin glasses arises because loops with an odd
number of antiferromagnetic bonds do not have a unique
spin configuration of lowest energy. In a simple square with
three antiferromagnetic bonds (green) and a ferromagnetic
bond (blue), all of equal strength, either of the two
orientations of the spin at the lower right corner gives the
same energy when the orientations of the other three spins
are fixed as shown. This energy is higher than that of the
lowest-energy configuration of a square loop with even
numbers of antiferromagnetic and ferromagnetic bonds of
equal strengths.

rest of the lattice by only two bonds means that thermal
fluctuations can readily disrupt any ferromagnetic align-
ment. Thus, while at zero-temperature the one-dimen-
sional Ising model is ordered, at any positive temperature
the entropy always dominates the energy at long length
scales and the system is disordered. The principle that
ordered states are more easily destroyed by thermal
fluctuations as d decreases is very general and gives rise to
the notion of the lower critical dimension, d,, which is
defined as the lowest dimension (not necessarily integer!)
above which an ordered phase can exist at nonzero
temperature. For Ising ferromagnets, then, d, = 1.

One can often usefully describe ordered phases in
terms of their ground states and excitations. In an Ising
ferromagnet the two obvious ground states have all spins
pointing either up or down. (See the box on page 62,
however.) The lowest-energy excitations of linear size L
are connected, compact droplets of Ld overturned spins. It
costs energy, of order J times the surface area ~ Ld 1 , to
create such a droplet. This simple idea underlies the
important notion of the "stiffness" of an ordered phase—
in many ways its most fundamental characteristic, and a
particularly vital one in our understanding of disordered
systems. One gets a sense of how basic this notion is by ob-
serving that nonphysicists who have never heard of
broken symmetry have a clear intuitive understanding
that solids are distinguished from liquids by their rigidity,
or resistance to distortion. J. M. Kosterlitz and D. J.
Thouless have shown that certain ordered phases—for
example, solids in two dimensions—can exist without
broken symmetry or long-range order!2 Such phases are
characterized by their stiffness; for example, a two-
dimensional solid is characterized by a nonzero shear
modulus.

The stiffness of a system depends on the length scale
on which it is probed; a rough definition of the stiffness at
length scale L is the cost in free energy of distorting the or-
der significantly in a region of volume L'1. In an Ising fer-
romagnet, a domain wall separating up and down spins is
needed to distort the order. This costs a free energy
proportional to the wall's area L'1 ' , the coefficient of
proportionality being the interfacial tension a. At T= 0,
a = J. In general, the free-energy cost of excitations and
hence the stiffness of an ordered phase grows with length
scale L like L", where 0 is the stiffness exponent. If 0 is
negative, large excitations have free energies much less
than kB Tand so proliferate, destroying the ordered phase.
For an ordered phase to exist, therefore, 0, which depends
on the dimension d as well as on the system under
consideration, must be non-negative. The marginal case
0 = 0 thus corresponds to the lower critical dimension. In
one dimension, for example, ferromagnetic order in pure
Ising models is destroyed by droplet fluctuations because

0 = d—l. For solids and superfluids 6 = d — 2, which
implies that these ordered phases cannot exist in fewer
than two dimensions. The special Kosterlitz-Thouless
phases occur in the marginal case d = 2.

Disorder
Most random magnets are substitutionally disordered
materials in which several kinds of magnetic or nonmag-
netic ions are alloyed together. The qualitative effect is to
make the exchange interactions between pairs of spins
vary randomly from one pair to another, the interactions
for different pairs being totally uncorrelated in the ideal
case. The simplest possibility, called the random-ex-
change model, occurs when the couplings are all ferromag-
netic (that is, all J^ > 0 in equation 1) but vary in strength.
Spins are still fully aligned in the ground states of this sys-
tem; for d>d, = 1 a ferromagnetic phase, in which the
global spin-flip symmetry is spontaneously broken, exists
below a finite critical temperature. Though early experi-
mental data suggested that the sharp transitions in pure
materials were somehow broadened, or "smeared," by
spatial inhomogeneities, heuristic arguments by A. B.
Harris, later confirmed by renormalization group calcula-
tions, showed3 that this need not, in fact, be the case, at
least in the absence of macroscopic inhomogeneities, or
long-range correlations in the impurity positions. To see
this, imagine dividing the system into blocks of £d spins,
where t, is the correlation length. Spins in different blocks
can be thought of as essentially uncorrelated. As S, grows,
the statistical variations in the average exchange strength
(and hence in the effective Tc) of the various blocks
shrinks, thus allowing the system to undergo a perfectly
sharp transition at a well-defined Tc. Fabrication of high-
quality crystals with almost ideal substitutional disorder
has since allowed experimental confirmation of this idea.4
(Indeed, the improvement in fabrication techniques has
sparked significant overall progress in the understanding
of random systems.) The earlier, "smeared" transitions
were presumably artifacts of macroscopic inhomogene-
ities. In fact, the phase transitions in the best random
magnets are virtually as sharp as those in pure magnets
(see the figure on the opposite page). Thus the equilibrium
behavior of random-exchange ferromagnets is qualitative-
ly the same as that of pure systems.

Far more interesting behavior occurs when the
distribution of the J,, 's includes both positive (ferromagne-
tic) and negative (antiferromagnetic) interactions. It is
then possible for the interactions to compete with each
other as shown in the figure above, making it impossible to
satisfy simultaneously all of the exchange interactions of
the Hamiltonian. This property, called frustration, is
responsible for much of the fascinating behavior of random
systems. Finding the ground states of a frustrated system
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Sharp divergences in the correlation length and the
staggered susceptibility at a critical Tt mark the transition to
an antiferromagnetic state in the disordered antiferromagnet

Fe0 5 Zn0 5 F2. The figure shows the inverse of the correlation
length (blue) and of the staggered susceptibility (black).

(Adapted from reference 4.)

is a highly nontrivial optimization problem in which one
must decide which bonds to satisfy.

If the density of negative couplings, and hence the
frustration, is small, only a few spins will be misaligned in
the ground state, and the ordered phase will generally be
like that of a normal ferromagnet. When enough of the
couplings are negative to produce strong competition,
however, the behavior becomes very subtle, and basic
issues such as the existence and nature of an ordered
phase become difficult. Such systems are known as spin
glasses.5 The system denned by the Hamiltonian of
equation 1 but with the J,/s symmetrically distributed
about zero is the Ising-spin version of the model first
proposed by S. F. Edwards and P. W. Anderson as a
prototypical spin glass.6 (Their original model involved
Heisenberg spins—unit-length vectors free to point in any
direction on the unit sphere—which are more realistic.)

Rather than immediately considering spin glasses, we
first discuss the random-field Ising model, a somewhat
simpler system with a different kind of frustration. After
years of sometimes bitter controversy, a rather clear
understanding of this model has finally emerged. (Space
limitations prevent us from discussing random-axis mod-
els, an interesting class of frustrated systems in which
each of the Heisenberg spins experiences single-site
anistropy, the orientation of the preferred axes varying
randomly from site to site. These magnets have features
in common with both random-field magnets and spin
glasses. We refer the interested reader to reference 5 for a
brief review and bibliography.)

Random-field Ising model
The model is defined by the Hamiltonian

(2)

The magnetic fields h, are random variables with no (or at
most, short ranged) correlations between their values at
different sites. They are chosen from an even distribution,
so the fields point randomly up or down and their average
value is zero. Though the random-field model remained a
theoretical construct for several years following its
introduction7 in 1975, it is now understood to describe the
essential physics of a strikingly rich class of experimental-
ly accessible disordered systems. These include structural
phase transitions in random alloys, commensurate charge-
density-wave systems with impurity pinning, binary fluid
mixtures in random porous media, and the melting of
intercalates in layered compounds such as TiS2. The most
accurate data thus far have come from a magnetic
realization—disordered Ising antiferromagnets such as
Fe^Zn, _XF2 in a uniform magnetic field.

The behavior of the random-field model is governed by
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the competing tendencies of the spins to align ferromagne-
tically under the impetus of the exchange Jor to follow the
local fields h, and so be uncorrelated. This is a competi-
tion between two energies—the exchange energy and the
random-field energy—and therefore differs from the
energy-entropy battle that controls the phase transitions
in pure and unfrustrated random systems. Thermal
fluctuations play a secondary role in this struggle, since,
as we shall see, their disordering effect is considerably
weaker than that of the random fields. One therefore can
understand most of the equilibrium physics of the model at
all temperatures, including the critical properties, by
studying the model at zero temperature.

The random-field model's simplicity relative to spin
glasses stems from the fact that its possible phases and
order parameters seem rather straightforward. Even
though the Hamiltonian of equation 2 has no spin-flip
symmetry, the model is spin-flip symmetric in a statistical
sense: The transformation h, — — h,, S, — — S, shows
that the magnetization m, averaged over the ensemble of
random fields, vanishes for any even distribution of the
h, 's. Thus </n>av is the natural order parameter for the
random-field model: When the exchange dominates, the
system orders ferromagnetically, and <m>av acquires a
nonzero value. When random-field or thermal effects
dominate, the system is a paramagnet, with <m>av = 0, as
required by the "average" spin-flip symmetry.

This apparent simplicity is deceptive, however. Let us
denote the typical magnitude of the random fields by h.
One naively expects that at low temperatures the system
will be a paramagnet for h/J^l and a ferromagnet for
hiJ41- While it is true that for sufficiently large h/Jeach
spin will follow its local field, producing paramagnetism at
all temperatures and in any dimension, the situation at
small hIJ is more subtle. This was first appreciated by Y.
Imry and S.-k. Ma,7 who studied the stability, with respect
to the overturning of a large droplet of spins with linear
size L, of an assumed perfectly aligned ferromagnetic
ground state (say "up") in the presence of random fields
h4 J. Formation of such a droplet will gain energy from
the random-field term of the Hamiltonian only if statisti-
cal variations have produced a preponderance of down-
pointing fields within it (see the figure on page 57). The ex-
cess of down fields will typically be of order (Ld )!/2 in d di-
mensions, whereupon roughly hL'"2 in random-field
energy is gained. The exchange-energy cost of the droplet
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Hysteretic behavior of a random-field Ising magnet. The
figure shows the width at half maximum, proportional to the
inverse correlation length, of a neutron scattering peak in the
disordered antiferromagnet FeObZnO4F2 placed in a 5.5-T
magnetic field. When the magnet is cooled in the field, the
half width (gray) is larger than the experimental resolution
(dashed line); but if the field is turned on after the magnet is
cooled below Tr = 43 K, then the half width is limited by
experimental resolution (green). A resolution limited half
width is evidence for antiferromagnetic ordering. For 7"< 7"c
the half width remains essentially constant at its low-
temperature value (blue) when the magnet is heated after
being cooled in the field . [Adapted from D. P. Belanger,
S. M. Rezende, A. R. King and V. Jaccarino, /. Appl. Phys.
57(1)3294(1985).]

is proportional to its surface area, ~JLd '; thus for any
d > 2 it dominates the gain from the random-field term at
large L, ensuring the stability of the ferromagnetic ground
state. When d <2, however, the random-field energy
dominates at sufficiently large L even for arbitrarily small
h/J, thereby rendering ferromagnetism unstable with
respect to droplet formation. This domain-wall argument
therefore predicts that the lower critical dimension is 2 for
the random-field model when h/J is small. For d = 2,
where both energies are proportional to L, the exchange
energy dominates for h/J<il, but a more sophisticated
version of the argument that treats the meandering (or
roughening) of walls in response to local pockets of fields
pointing predominantly up or down (see the figure on page
57) shows that the ferromagnetic ground state is actually
unstable in this marginal case."

Doubt was soon cast upon the conclusion d, = 2 by
formal field-theoretic arguments called dimensional re-
duction,8 which purported to show that dt = 3. (See the
box on page 67.) Fueling the ensuing controversy were
results of quantitative experimental studies of random-
field magnets made possible by the fabrication of extreme-
ly high-quality dilute Ising antiferromagnets such as
Fe^Zn, _XF2. Application of a uniform magnetic field to
such systems generates an effective random field that
couples to the antiferromagnetic order parameter, produc-
ing a realization of the random-field model in which the
strength of the effective random field varies with the
externally applied uniform field.9 In principle, high-
resolution neutron scattering experiments on these sys-
tems ought to have settled the debate about d,, in that the
development of long-range antiferromagnetic order (that
is, a Bragg peak in the static structure factor) at low
temperatures in three-dimensional samples would con-
firm that d, = 2. In practice, this expectation was
confounded by the occurrence of hysteresis: Samples
cooled in even very modest effective random fields showed
no Bragg peak and hence no long-range magnetic order,
while the long-range antiferromagnetic order developed
under cooling in zero applied (that is, zero random) field
persisted under subsequent application of even relatively
large fields (see the figures above and on the opposite
page).10 The same basic phenomenology was observed in
two- and three-dimensional samples. Difficulties in decid-
ing which, if either, of the two modes of measurement was
yielding the true equilibrium behavior extinguished hopes
for a clean experimental resolution of the d, quandary;
indeed, these problems intensified the debate.

More recently, rigorous proofs by J. Z. Imbrie and by
J. Bricmont and A. Kupiainen have established the
correctness of the result d, = 2, and hence of the equilibri-

um phase diagram of the three-dimensional random-field
model shown on the opposite page." Furthermore, an
explicit mechanism for the failure of dimensional reduc-
tion, connected with the neglect of statistically rare but
physically significant regions of the sample (see the box on
page 67) has now been identified.12 This still leaves
unexplained, however, the apparent inability of the
experimental systems to equilibrate on reasonable time
scales. We shall defer treatment of this fundamental
question to the section on nonequilibrium phenomena.

Spin glasses
Theoretical interest in spin glasses was initiated by the
experimental observation5 l:J of a rather sharp cusp in the
temperature dependence of the low-field, low-frequency
susceptibility in the dilute metallic alloy CuMn (see the
figure on page 63), at roughly 1% concentration of
magnetic ions (Mn). (See the columns by Anderson in the
January, March, June and September issues of PHYSICS
TODAY.) Neutron diffraction studies showed that no Bragg
peak at any wavenumber arises below the temperature Tf
where this cusp occurs; thus no long-range ferromagnetic
or antiferromagnetic order accompanies it. As one
approaches T( from above, relaxation times become
extremely long and the system begins to exhibit hystere-
sis, which suggests that T( is a kind of "freezing"
temperature. The figure on page 63 schematically shows a
typical history-dependent effect: The susceptibility of
samples cooled in a finite field is rather fiat below T{ and is
almost reversible under subsequent heating and cooling.
However, application of the same field to a sample cooled
in zero field results in a much-reduced susceptibility at
temperatures below Tf; this reduced susceptibility in-
creases extremely slowly with time for fixed field and
temperature. Magnetic remanence—the persistence of a
finite magnetic moment that decays slowly after the
system is field-cooled below T[ and the field is removed—is
also a standard feature of spin glasses. Although these
phenomena were first observed in dilute metallic samples,
the same qualitative features have since been seen in
many very different systems, such as the magnetic
insulator Eu^Sr, t S at high concentrations; these char-
acteristics are now taken to constitute a loose definition of
spin glass behavior.13

Edwards and Anderson attributed these phenomena
to the competition between random ferromagnetic and
antiferromagnetic interactions.6 They hypothesized that
the cusp and apparent freezing at Tf were associated with
a true phase transition into a state with broken spin-flip
symmetry. They took the viewpoint that the frustration
induced by the competing interactions is paramount and
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that the details of how it arises in real systems are
peripheral. Thus, even though in dilute metallic alloys
like CuMn competing interactions arise because of the
oscillations in sign of the long-range (RKKY) interaction
between the spins of the randomly positioned magnetic
ions, Edwards and Anderson chose a simple lattice model
with random, competing short-range interactions—the
Heisenberg-spin version of equation 1 with the JtJ's
distributed symmetrically about zero. They proposed that
the model orders by spontaneously breaking the spin-flip
symmetry to produce the low-temperature (spin glass)
phase. Each spin S, develops a nonzero expectation value,
m, =<S,>, in this phase, but the sign and magnitude of
m,'s vary from site to site because of the random
competing interactions. The spatial average of the m, 's,
that is, the average magnetization density, thus vanishes,
as do all other Fourier amplitudes of the m, 's, consistent
with the absence of Bragg peaks in the neutron scattering
measurements.

Edwards and Anderson proposed the quantity
N

q = (l/N) £ m;
i i

where N is the number of spins, as a suitable order
parameter. This "Edwards-Anderson order parameter"
vanishes in the disordered phase, where m, = 0 by spin-
flip symmetry, and is nonzero in the spin glass phase.
Edwards and Anderson went on to construct an approxi-
mate mean-field solution for their model, finding that q
did indeed develop a nonzero value at a continuous phase
transition at finite temperature, with an associated cusp
in the susceptibility, consistent with the measurements.

This insight left open the crucial question of the
existence of the ordered, spin glass phase in the physical
dimensionalities 2 and 3, that is, of the lower critical
dimension for spin glasses. There are undoubtedly large
clusters of spins in the spin glass ground state that, owing
to a delicate balance between ferromagnetic and antiferro-
magnetic interactions, can be flipped with a relatively
small energy cost. This notion that there are many
configurations differing substantially from the ground
state in structure but almost identical to it in energy
suggests that the spin glass state is particularly fragile
and might be readily destroyed by thermal fluctuations.

Unfortunately, computing d, is extremely hard. The spin
glass ground state, in which spins point up or down in a
complicated pattern to minimize the exchange energy of
the random, competing interactions, is hopelessly difficult
to compute analytically, and can be computed numerically
only for very small samples. As in the random-field model,
one expects droplet excitations of size L away from the
ground state to be the chief destabilizing agents of the
ordered, spin glass state. Unlike in the random-field
model, however, the free-energy cost of such droplets (that
is, the stiffness) cannot readily be determined. In conse-
quence, estimates of dt for Ising spin glasses have
wandered inconclusively between 2 and 4 for ten years.
In the last few years, however, a fairly universal consensus
that 2<d, <3 has emerged.5 Much of this progress has
come from exhaustive Monte Carlo simulations on sam-
ples with up to 64x64x64 lattice sites in three dimen-
sions. A major advance in the effectiveness of the Monte
Carlo method for spin glasses resulted from the decision of
A. P. Young and others to study the behavior of the spin
glass susceptibility ^SG in the paramagnetic phase as the
putative critical temperature Tt. is approached from
above. Working in the paramagnetic phase circumvents
the problem of the very long equilibration times encoun-
tered below Tc (see the section on nonequilibrium phenom-
ena). According to the theory of phase transitions, Ysc, > a n

analogue for spin glasses of the staggered susceptibility
whose singular behavior characterizes the phase transi-
tion in antiferromagnets, should diverge at 7̂ . if the spin
glass transition is continuous. Numerical simulations of
three-dimensional Ising spin glasses show clear signs of
this divergence, so one may infer with some confidence
that a continuous phase transition occurs (see the upper
figure on page 64). Similar studies in two dimensions, on
the other hand, indicate that T,. is pushed down to 0.
From this we conclude that 2<dt<3. Of course this
inference, based as it is on the analysis of finite systems,
will always be somewhat uncertain. But most workers in
the field find the simulations and other numerical
evidence5 in favor of this result quite compelling.

Experimenters have used a similar strategy to deter-
mine whether real three-dimensional spin glasses undergo
true phase transitions." The nonlinear susceptibility of a
spin glass (defined as \ i = diM/dH3\H = n , where Mis the
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Theoretical phase diagram of three-dimensional random-
field magnets. A true equilibrium phase transition occurs at
the black line, whereas the red line marks the onset, on
cooling, of irreversible (hysteretic) behavior on macroscopic
timescales. A point in the ordered phase may be reached
either by cooling in a finite field (gray) or by cooling in zero
field and then turning on the field (green). For small random
fields, the phase diagram for one random-field magnet has
been mapped out in detail by V. Jaccarino, A. R. King and
D. P. Belanger, / Appl. Phys., 57(1) 3291 (1985).
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MetastQbility and Equilibrium States
A system is said to be in a metastable state when its
properties are virtually independent of time over a wide
range of time scales but ultimately change at some even
longer time. In pure systems such behavior occurs near a
first-order phase transition. If, for example, a small
negative magnetic field is applied to a pure Ising ferro-
magnet in the ordered state with a positive, or "up,"
magnetization, a very long time is required to nucleate
(critical size) droplets of the "down" state that grow with
time and thus reverse the magnetization. During this
time, the up state is metastable. There is a large
separation between the time scale for the microscopic
relaxation that occurs immediately after the field is
applied, and the time scale for nucleation of the down
state. (See the figure at right.) Such a wide separation of
time scales is needed for metastability to be a useful
concept.

Distinguishing between metastable states and equilibri-
um states, which are stable for infinitely long times, is a
subtle but important problem related to understanding
ground states of an infinite system. For a finite classical
system, the ground state (or states, if there is degeneracy)
is simply the configuration of lowest energy. However,
for infinite systems, especially in the presence of random-
ness, such a statement is not meaningful! A ground state
of an infinite magnet is any configuration whose energy
cannot be lowered by changing the spin configuration in
any finite region. Thus in an Ising ferrmomagnet, the
configuration with a single planar domain wall separating
up spins from down spins is a truly stable ground state,
rather than a metastable one, even though it has a higher
energy locally than the wholly up configuration does.
Bona fide equilibrium domain-wall states can also exist at
nonzero temperatures. A recent, somewhat surprising
theoretical prediction is that no equilibrium domain-wall-
like states exist in spin glasses.19

10 1CT4 10°
TIME (sec)

108

In random Ising magnets domain walls are effectively
frozen over long times, local fluctuations being virtually
time independent. These domain walls thus produce a
kind of metastability. In any decade, or "epoch," of
time, however, there is always relaxational activity taking
place in some region of a random magnet. Macroscopic
properties of the system thus evolve in every epoch, and
the clean separation of time scales found in pure systems
does not occur. The figure shows the time dependence
of a macroscopic variable in a conventional metastable
system (blue) and that in a random magnet (red). To
distinguish between these two kinds of metastable behav-
ior one must probe a system on a wide range of time
scales.

The spectrum of time scales in random magnets is so
broad that in any epoch almost all processes in the
system are either in nearly perfect equilibrium or com-
pletely out of equilibrium, with only a few processes
actually equilibrating in that epoch. Ideas based on this
partial separation of time scales have led to insights into
some experiments on hysteresis and remanence in spin
glasses.19

magnetization produced by an applied magnetic field H)
turns out to be closely related to ^SG in the paramagnetic
phase, and so should diverge at the Tc if the spin glass
transition is continuous. Measurements of this quantity
in several spin glass systems, notably CuMn and AgMn,
show strong evidence of such a divergence, and hence of a
spin glass transition (see the lower figure on page 64).514

One can never in practice see an actual divergence in a fi-
nite system, so the case is not airtight, but combined with
other evidence from studies of dynamical effects, the data
strongly suggest that at least some real spin glasses do
undergo a genuine phase transition in three dimensions.

Equilibrium properties of spin glosses
Having argued that long-range spin glass order occurs in
three dimensions, in both simple models and real systems,
we now discuss the equilibrium properties of the spin glass
phase itself. Much of the theoretical work on spin glasses
has been based on an infinite-range model introduced by
D. Sherrington and S. Kirkpatrick.15 The model is defined
by equation 1, except that a random exchange bond J:J
connects every pair of sites (i,j), not just the nearest-
neighbor pairs. Such infinite-range models provide a
formulation of mean-field theory, which, at least for pure
systems, can be solved exactly (see the box on page 67).
Mean-field theory, the first refuge of statistical mechani-
cians, has been a source of insight into the ordered phases
and phase transitions of many complex systems.

The SK model is an ordinary paramagnet at high
temperatures. As the critical temperature TQ is ap-
proached from above, the spin glass susceptibility ^SG
diverges like (T — Tc)"', signaling a continuous spin glass
transition. The ferromagnetic susceptibility has a cusp at
Tc and remains constant for all T< Tc, while the Edwards-
Anderson order parameter grows linearly from zero for T
slightly less than Tc. All of this is in accord with the
original Edwards-Anderson calculations. The spin glass
phase, on the other hand, has been argued by G. Parisi and
others516 to have a surprisingly rich structure: For all
T< Tc there exist (in a sense that is not yet entirely clear)
an infinite number of distinct equilibrium states, or
valleys in the free-energy landscape, into which the
system may fall when cooled below Tc, much as an Ising
ferromagnet spontaneously selects one of the two equiva-
lent states ("up" or "down") available to it below the Curie
temperature. Each such state is separated by infinite
energy barriers from all the others; having selected one of
them, the system remains in it forever. The values of
physical quantities such as the energy and Edwards-
Anderson order parameter are independent of the sample
(that is, of the particular realization of the JtJ 's) and of the
state. Remarkably, however, some macroscopic quantities
depend on the sample even for arbitrarily large systems!5

The spin-glass susceptibility, which diverges as T— Tc
from above, stays infinite for all temperatures below Tc,
indicating that the states are extremely sensitive to an
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Static susceptibility of the spin glass CuMn for 2.02 atomic
percentage of Mn. Below T, ~ 1 5 K, the measured

susceptibility (MIH) is larger when the sample is cooled in a
small magnetic field (gray) than when it is cooled in zero field
(green). Arrows indicate the direction of temperature changes

in the course of the two measurements. Such hysteretic
behavior is characteristic of spin glasses. [Adapted from S.
Nagata, P. H. Keesom and H. R. Harrison, Phys. Rev. B 19,

1633 (1979).]
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applied field. Perhaps most remarkably, the spin glass
transition in the SK model persists even in the presence of
a magnetic field H, with \<SG diverging at a finite
temperature Tc (H) despite the fact that the field explicitly
breaks the spin-flip symmetry of the Hamiltonian.

As yet, the relevance of the SK model to the behavior
of spin glasses with more realistic short-range interactions
remains unclear (see the box on page 67). Building on
earlier attempts to calculate the stiffness of short-range
spin glasses,17"4 Fisher and D. A. Huse have proposed a
very different picture of the spin glass phase.19 They
hypothesize that like the ordered phases of simpler
systems, the spin glass phase can be characterized by its
stiffness, which they assume grows with length scale L like
L". The argument that ordered phases are stable only
when the stiffness exponent is positive requires, given the
numerical results for spin glasses, that 6 > 0 for d = 3 and
9 < 0 for d = 2 or 1. The lowest-energy droplet excitations
away from the ground state, which contain Ld spins,
typically have free energies of order FD (L)zz TL", where Y
is the (temperature dependent) stiffness modulus of the
spin glass. Although such droplets are compact, their
diameters being typically of order L, their boundaries can
be shown to be fractal,'9 with surface areas proportional to
Ld", where d — 1 < ds <d. (See the article by Po-zen Wong
on page 24.)

Because of the strong frustration, large sections of the
walls separating droplets actually have negative energy
(though the total energy must of course be positive). This
suggests that droplet energies are roughly given by a sum
of terms random in both magnitude and sign, producing an
exponent 6 much smaller than for ferromagnets, where
9 = d— 1. A more careful argument yields the bound
0<(d- l)/2; the best numerical estimate1718 gives 6-0.2
for d = 3. The frustration also produces droplets of
energies arbitrarily close to zero; even for large L the
distribution of droplet energies has a nonzero weight down
to FD (L) = 0. Clearly only droplets with free energies S T
will be excited at low temperatures; these droplets are the
"active" excitations of the system. Although arbitrarily
large droplets can be thermally active at very low
temperatures, large active droplets are rare and so tend to
be far apart (see the figure on page 65).

This general picture yields many specific predictions
for the properties of the spin glass phase. For example, the
connected correlations dr) between a typical pair of spins
separated by a distance r decay exponentially with r. In
the rare event that the two spins happen to be part of a
large active droplet, however, their correlations are much
stronger. The mean-square correlation function—an
average of (C(r)f over all pairs of spins separated by
distance r—reflects the strong correlation of such unusual
pairs and decays only algebraically with r.'9 In conse-
quence, spin glass and nonlinear susceptibilities are
infinite at all temperatures in the spin glass phase. The
phenomenon of physical quantities (in this case, ^SG, for

example) being controlled by rare, statistically unlikely
regions of the sample is a subtle but important effect that
occurs frequently in disordered systems.

Another interesting prediction of the droplet picture
of the spin glass phase is the extreme sensitivity of the
equilibrium states to changes in temperature. Arbitrarily
small temperature changes upset the delicate balance that
produced the equilibrium state at the original tempera-
ture, and so result in the reorientation of large regions of
the system. As a result, the relative orientations, in
equilibrium, of spins located sufficiently far apart change
randomly with arbitrarily small changes in temperature!
The evolution of the spin glass phase with temperature
may therefore be thought of as an infinite sequence of
infinitesimal first-order transitions. As we shall see, this
phenomenon plays an essential role in preventing spin
glasses from reaching equilibrium.

Identification of large-scale, low-energy-cost (active)
droplets as the dominant excitations of the spin glass
phase also gives rise to some rather striking predictions
about the equilibrium dynamics. For example, the power
spectrum of the equilibrium magnetization noise is
predicted to behave, aside from logarithmic corrections,
like \lca—that is, to exhibit equilibrium "\/f" noise at low
frequencies co. The magnetic susceptibility, a related
quantity, is argued to vary only logarithmically with
frequency.19 Both predictions are in quantitative agree-
ment with recent experiments.20

Although some aspects of this emerging picture of the
spin glass phase in systems with short-range interac-
tions—for example, the fact that ^SG is infinite—are
similar to predictions for the SK model, crucial differences
do exist: First, scaling arguments and the intuition
gleaned from the study of random-field and random-
interface models strongly suggest that Ising-spin glass
models with short-range interactions have only one pair of
ground states (and hence only two equilibrium states for
T> 0), related to each other by the global spin-flip
symmetry!19 The basic physics underlying this assertion
is that a system stiff enough to support an ordered spin
glass phase is also stiff enough to resist, in the thermody-
namic limit, the overturning of any infinite proper subset
of the spins. Secondly, the Imry-Ma domain-wall argu-
ment7 (first used in this context by W. L. McMillan17) can
be used to show that a magnetic field destroys the spin
glass phase. The reason for this is that (9<(<i — l)/2, so the
field energy —HLd'2 gained by overturning a droplet
always dominates the exchange cost of ~L° at large L.

These predictions directly contradict two of the most
dramatic features of the spin glass phase suggested by the
SK-model results. While there are various possible holes
in the arguments leading to these predictions—which are
certainly controversial—it is fair to say that no consistent
picture of finite-range spin glasses incorporating the SK-
model result of many equilibrium states has yet been
constructed.
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Nonlinear susceptibilities. Top right: Result of Monte Carlo
simulations of three-dimensional Ising spin glasses with 83

(blue), 163 (gray), 323 (green) and 643 (black) spins,
performed on a special purpose computer. (Figure adapted

from A. T. Ogielski, Phys. Rev. B 32, 7384 (1988).)
Bottom right: Experimental result for the spin glass AgMn

with 10.6 atomic percentage of Mn. Straight lines indicate
the behavior expected if the nonlinear susceptibility diverges
at a critical temperature 7"t like (T — Tc) ' with y= 1 or 2.

These data are strong evidence for the existence of a spin
glass phase. [Figure adapted from P. Monod and H.

Bouchiat, / Phys. (Paris) Lett. 43, 145 (1982).]

Nonequilibrium phenomena
In comparing with experiment the results of calculations
for static, equilibrium properties one implicitly assumes
that the system being investigated achieves equilibrium
on time scales short compared with those of the experi-
mental probes. This assumption is almost never violated
in typical pure systems, but its conspicuous failure in
disordered systems has dramatic consequences for the
experimental phenomenology.

The degree to which static equilibrium theories
accurately describe measurements depends on the rate at
which the system equilibrates following a change in some
external parameter such as temperature, relative to the
rate at which that parameter is varied. Since the
equilibrium correlation length £ diverges at a continuous
phase transition, and since correlations cannot grow to
infinity in a finite time, any large enough system cooled
through a critical point at a finite rate will drop out of
equilibrium. (The divergence of £ in the vicinity of a
critical point is always accompanied by the growth of the
characteristic relaxation, or equilibration, time, since
many spins must relax coherently.21 This phenomenon is
called "critical slowing down.") For typical pure systems,
however, the equilibration rate is so rapid that even
macroscopic systems can equilibrate in reasonable experi-
mental times. For example, the characteristic time r
required for a pure Ising system at its critical point to
equilibrate on a length scale L is T~T0(L/O)', where a, a
typical lattice spacing, is a few angstroms, r o ~10~ u sec
and the exponent 2 — 2. Hence in 1 second the system will
relax over distances on the order of ~ 106 A—that is, over a
macroscopic length scale. Thus the immense speed of
microscopic processes allows pure systems to equilibrate
quickly even near critical points. For most purposes,
therefore, one can ignore nonequilibrium effects.

One can of course force the system out of equilibrium
by increasing the rate at which it is perturbed. Let us, for
example, consider quenching a system instantaneously
from a high temperature, where £ is small, to a tempera-
ture below Tc and study the "domain growth kinetics"—
the rate of growth of the initially small clusters of up and
down spins. In pure Ising-like systems the radius R(t) of
typical domains of correlated spins follows the Lifshitz
growth law, R(t)~t'/2. This is a consequence of the
growth's being controlled by surface tension22: The rate
dR/dt at which small droplets shrink and large ones grow
is proportional to the droplets' curvature, 1/R.

In random systems, by contrast, the droplet boundar-
ies tend to get pinned by impurities, which retards the
growth. This is readily seen in the context of the random-
exchange model,2' though similar considerations apply
equally well to random-field magnets and to spin glasses:
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The domain walls separating up and down spins in
random-exchange systems minimize their energy cost by
passing between sites connected by weak bonds (see the
figure on page 57), producing- wall meandering, or
roughening. The walls must therefore surmount the
energy barriers presented by nearby stronger bonds in
order to move. The possibility of finding weak bonds by
meandering increases with L, and hence so do the energy
barriers. One expects the energy barriers opposing the
equilibration of random systems of length scale L to scale
like B(L)~LJ' for large L. This result was first derived by
J. Villain and by Grinstein and J. F. Fernandez for
random-field magnets. The exponent i/> depends on the
dimension d and the type of disorder. Since the typical
time required to surmount a barrier B at temperature Tis
proportional to the Arrhenius factor expCB/71), the alge-
braic form for B(L) immediately implies that the time
required for equilibration on length scale L in the ordered
phase of a random system is r(L) ~ exp(Z// T). Conversely,
the length scale R(t) on which the system can equilibrate
in time t or, equivalently, the maximum length to which
correlations will extend following a quench into the
ordered phase is

R(t)~(lnt)u*
This remarkably slow growth of ordered domains under-
lies the hysteresis observed so ubiquitously in random
systems. For Â's of order unity, which is typically the case,
domain walls are effectively frozen; many orders of
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magnitude of increase in t are required to produce modest
changes in the correlation length and other measurable
quantities. Let us now discuss qualitatively some of the
implications of this slow domain growth in each of the
classes of random magnets:

Random-exchange systems ought to exhibit logar-
ithmically slow growth of correlations following a rapid
quench to a temperature below Tc for both d = 2 and
d = 3. But under slow cooling toward Tc the divergence of
correlation times r in the critical region is believed to be
governed by conventional critical slowing down with
r ~ g r , just as in pure systems. Unless z is anomalously
large, such algebraic slowing down allows, as argued
above, equilibration on macroscopic length scales in
ordinary experimental times. Hence under normal, gra-
dual cooling toward Tc correlation lengths can readily
become quite large, and remain large for T< Tt., effective-
ly masking the domain-wall freezing and concomitant
slow growth expected at lower temperatures.

Random fields. Arguments about energy barriers at
zero temperature23 suggest that the exponent i/> is unity for
both d = 2 and d = 3. So the slow equilibration following
quenches to low T is qualitatively similar to that of
random-exchange magnets. The situation under slow
cooling is quite different, however. We remarked earlier
that the fluctuations due to the random fields dominate
those due to thermal effects. Remarkably, this remains
true even in the critical region, not just at low tempera-
tures. Thus the characteristic free-energy scale, and
hence the height of typical energy barriers, is set not by
thermal energies but by the random fields. Since the
equilibrium correlation length |" is the only important
length in the problem near the critical point, it is
reasonable to assume that the barriers due to random
fields scale algebraically with this length: B~^l/'\ where
\pc is a critical exponent of order unity. It follows
immediately that the characteristic relaxation time r
diverges exponentially with 4", r—expl^'/T), as one
approaches Tc from above.2124 This phenomenon, known
as activated dynamic scaling, means that as the tempera-
ture is lowered r will increase beyond typical measuring
times at a temperature somewhat greater than Tc. At
that point the system will fall rather abruptly out of
equilibrium, and t, will remain essentially fixed at a finite
value as one cools further. This corresponds closely to
what is observed experimentally in random-field systems
when a sample is cooled in a magnetic field (see figures on
pages 60 and 61). The value at which £ freezes can be quite
small (~ 100 A, say) even for modest fields.

Thus there is a rather sharply defined "irreversibili-
ty" curve in the random-field-temperature plane at which
the system effectively freezes, even under slow cooling,
subsequent growth of correlations in time proceeding
logarithmically slowly. (The position of this freezing line
has now been mapped out rather precisely in experiments;
see the figure on page 61.) One simply cannot probe the
true equilibrium behavior of random-field magnets on any
reasonable experimental time scale; nonequilibrium dy-
namics play the dominant role. Note that samples cooled
below Tc in zero field presumably freeze too: They cannot
equilibrate in typical experimental times when the field is
applied. In this case, however, the frozen state does have
long-range order, and so is "closer" to the equilibrium
state of the three-dimensional random-field model than is
the state achieved under field cooling.

Spin glasses. The sharpness of the susceptibility
cusp and the apparent divergence of the nonlinear
susceptibility, found in both numerical simulations and
some experiments, show that spin glass correlations
become large as the temperature is lowered to Tc at H = 0.

This is consistent with the relaxation times diverging only
algebraically at Tc (as in the random exchange model), a
behavior suggested by theoretical arguments. (At present,
however, the data are also consistent with activated
dynamic scaling, such as occurs in the random-field
magnets.) Unlike in either random-exchange or random-
field magnets, however, the long correlations achieved in
spin glasses during slow cooling to Tc are not retained as T
is lowered below Tc. This is a consequence of the
sensitivity of the spin glass state to temperature
changes.'9 As T is lowered below 2 .̂, arbitrarily large
droplets of spins must be flipped for the system to be in
equilibrium at each new temperature. This process
requires overcoming the barriers, B{L)~L'', and so pro-
ceeds logarithmically slowly. Hence the system, which is
essentially frozen close to the configuration attained near
Tc, drops further and further out of equilibrium as T
decreases.

While the existence of a true phase transition in spin
glasses in a nonzero magnetic field remains controversial,
one expects the system effectively to freeze at a rather
well-defined curve, T = T((H), which passes just above the
zero-field critical point in the (T,H) plane. The freezing
will occur whether or not there is an equilibrium ordered
phase for nonzero field. If, as in the infinite-range model,
a finite-field transition does occur, then freezing will set in
just above the thermodynamic phase boundary, as just
discussed for H=0. If, on the other hand, the droplet
scaling picture is correct and there is no transition in a
field, T will not diverge for i / # 0 but nonetheless will get
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Excitations in the ordered phase of an Ising
spin glass consist of active droplets of spins
(blue), which fluctuate nearly independently,
so the single-site magnetization (here indicated
by the length of the arrows) is almost the
same for every site in a droplet but is reduced
compared with its value for spins that do not
belong to any active droplet. Active droplets
of all sizes are possible, but small dropletes
are more likely than big ones. The shape and
location of large active droplets changes
markedly with infinitesimal changes in the
temperature.
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extremely large in the vicinity of the zero-field critical
point at H= 0, T= Tc. Thus there will still be a sharply-
defined line through this point at which r will exceed
typical experimental times and the system will effectively
freeze. Aside from the weak (logarithmic) dependence of
the position of the freezing line on the time scale of the ex-
periment in this latter scenario, the dependence of Tt(H)
on H asymptotically close to H = 0 should be independent
of the occurrence of a true transition in equilibrium. As in
random-field magnets, therefore, one finds that the
dynamics control the experimentally accessible phenome-
na and the thermodynamic behavior plays only a support-
ing role.

Summary and outlook
We have seen that strongly competing interactions in
random magnetic systems produce new equilibrium or-
dered phases without counterparts in pure systems.
Perhaps more striking is the dominant role played by the
dynamics: Even on macroscopic time scales random
systems below their critical points are often far from
equilibrium; only by understanding their nonequilibrium
behavior can one hope to explain the experimental
observations.

For random-field magnets, a qualitative understand-
ing of the equilibrium phase diagram, critical behavior
and experimental history dependence has been achieved,
though quantitative agreement between theory and exper-
iment has yet to be attained.

The situation for spin glasses is far less clear. While
both model Ising-spin glasses in three dimensions and
some three-dimensional experimental systems apparently
undergo equilibrium phase transitions, the experiments
typically are performed on systems with Heisenberg spins.
The best theoretical estimates for these systems suggest
that di > 3, and hence that a spin glass phase does not exist
in three dimensions.5 This remains a puzzle. The effect of
the long-range RKKY interactions present in metallic
spin glass systems is likewise poorly understood.5 Indeed,
whether all or only some of the experimental spin glasses
have true phase transitions is far from clear. It seems
likely that many of the quintessential spin glass properties
can occur in systems that do not undergo a thermodynam-
ic phase transition.

Even for three-dimensional Ising-spin glass models,
crucial equilibrium issues such as the stability of the
ordered phase with respect to an applied field and the
number of equilibrium states in zero field remain contro-
versial. Given the difficulties of disentangling a true
phase transition from a nonequilibrium freezing line and
the absence of a good experimental Ising-spin glass,
prospects for settling the former issue experimentally are
not too bright. As for the number of equilibrium states, it
is not clear how the existence of many states would be
manifest experimentally. There has nonetheless been
encouraging agreement between theory and experiment
for certain nonequilibrium phenomena (see the box on
page 62). While many of the complicated dynamical and
hysteretic phenomena observed in spin glasses over the
last 15 years remain unexplained, progress in the under-
standing of important low-energy excitations makes one
optimistic that theoretical and experimental studies of the
spin glass phase will continue to converge.

The principle of universality (see the box on the
opposite page) suggests that concepts recently developed
for random magnets should have wide applicability to
other quenched random systems. For example, ideas
about random-field magnets have already been used to
study phase separation of fluids in porous media and
wetting on random substrates. The understanding that

certain macroscopic properties are governed by rare
regions of a sample has been applied to quantum problems
such as the onset of superfluidity in dirty superconductors
and superfluids at very low temperature. Spin glass
notions have found their way into neurobiology (see the
article by Haim Sompolinsky on page 70), molecular
biology, theories of evolution, and a host of optimization
problems such as designing computer chips, finding
optimum paths for a travelling salesman and partitioning
graphs under specific constraints. Some of these problems
have effective interactions that are long ranged, so
methods developed for the Sherrington-Kirkpatrick mod-
el are directly applicable. The "simulated annealing"
approach to optimization, in which the extremal values of
complicated cost functions of many variables are obtained
by what amounts to a series of Monte Carlo simulations at
successively lower temperatures, had its genesis in nu-
merical attempts to find the ground state of Ising-spin
glasses.

There is reason to hope that the mechanisms of
dynamical freezing found in systems with quenched
disorder will prove useful in systems such as real glasses,
which apparently generate their own effective random-
ness. It is worth mentioning in this connection the recent
interest in systems that exhibit dynamical phase transi-
tions without an underlying transition in the equilibrium
properties. The program of analyzing ordered phases in
terms of stiffness and droplet excitations, the power of
which has been so compellingly demonstrated in the
context of random magnets, turns out to generalize rather
nicely to complicated dynamical systems without an
underlying Hamiltonian or energy, such as cellular
automata. This approach is already being fruitfully
employed in the elucidation of the phases and phase
transitions of these systems.

Theoretical investigations of random magnets began
during the 1970s with attempts to understand the
equilibrium phase transitions and critical phenomena via
techniques, such as formal e expansions, borrowed from
the study of pure magnets. These tools have proved
enormously successful for pure systems, whose ordered
phases and dynamics are relatively straightforward, but
their application to random magnets has produced many
anomalies and misleading results. It has gradually
become clear that such tools are simply inadequate for
random systems, whose ordered phases can be intriguingly
complex and in which subtle interplay between nonequi-
librium dynamic phenomena and the underlying equilibri-
um behavior is observed.

Though new tools designed specifically for random
systems are, with a few exceptions, still quite crude, they
have led to considerable qualitative understanding.
Further refinements are certainly needed. These are
likely to require the grand scheme of Wilson's renormal-
ization group if they are to capture the many time and
length scales and the statistical variations that contribute
to the behavior of disordered systems. The field of
magnetism has finally reached maturity, however: The
basic issues and questions are now clear. Research in this
fascinating area is at last beginning to wrest some order
from the jaws of disorder.
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Renormalization Group Techniques in Random Systems
The revolution of the 1970s in our understanding of the
critical phenomena at continuous phase transitions was
achieved with the concepts and language of the renor-
malization group. The essential idea is to focus on the
behavior of a system at successively longer length scales.
Universality—the remarkable property that the behavior
of a macroscopic system at large length scales is indepen-
dent of microscopic details—is a consequence of the
convergence of the effective Hamiltonians that describe
the system at different scales to one of several fixed
points as the length scale is increased. Progress in
calculating critical exponents using these ideas was
triggered by the realization that mean-field theory pro-
vides a base about which systematic perturbative renor-
malization group expansions could be developed. For
pure systems, mean-field theory is exact in the limit that
the interactions become infinite ranged, and captures
much of the qualitative physics of systems with short-
range interactions. It even yields the correct critical
exponents for all dimensions c/above the so-called upper
critical dimension, du, of the system. The renormalizaton
group enabled one to calculate the exponents for d<du

in an expansion in the small parameter e = du — d, with
d being treated as a continuous variable. For pure
magnets, such as those described by the Ising model, for
which du is 4, these e-expansion methods give accurate
exponent values even for d=3.

It was therefore natural to construct mean-field theo-
ries for random systems and then to attempt expansions
about some appropriate upper critical dimension. This
program worked well for random-exchange magnets,
but despite the expenditure of enormous effort, it has so
far failed to provide much insight into the subtleties of
the random-field and spin glass models with realistic
(short-range) interactions. Instead, the approach has

produced some rather grave misapprehensions. Con-
sider, for example, the random-field Ising model, for
which the mean-field theory is rather straightforward.
From formal e expansions around the upper critical
dimension, which is 6 for this model, it was concluded
that the critical exponents at the ferromagnetic phase
transition in any dimension d were the same as those for
the pure Ising model in d— 2 dimensions. From this
result, which is known as "dimensional reduction,"
follows the prediction that the lower critical dimension
of the random-field model is 3. This prediction is now
known to be incorrect. Moreover, the e expansion
misses completely the crucial slow dynamics and the
possibility of history-dependent effects in the model.
Both of these failures arise from a difficulty encountered
frequently when applying formal perturbative methods
to random systems: In these methods the procedures
for averaging over randomness typically neglect the
effects of statistically unlikely regions of the random
system; such regions can make essential contributions to
physical quantities.

For spin glasses, much of the theoretical effort has been
expended on the infinite-range Sherrington-Kirkpatrick
model, yielding many interesting results and also insights
into difficult optimization problems. But so far there is no
clear indication that the behavior of this model is relevant
to short-range spin glasses. Attempts to expand perturba-
tively about it continue to be plagued with severe
technical and conceptual difficulties. Indeed, it is still
unclear that the SK model really represents a high-
dimensional limit of short-range spin glasses.

In spite of these difficulties in obtaining quantitative
results, qualitative renormalization group ideas underlie
much of the progress toward understanding random
magnets that we have sketched in this article.
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