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Some observations suggest that the fungal 
signal is produced only by hyphae that have
undergone the branching response — that 
is, after perception of branching factor11.
Akiyama and colleagues’ results open up the
possibility of inducing fungal responses in the
absence of a host root, which might also help
in identifying the fungal signal.

Despite the global importance of arbuscular
mycorrhizal fungi and their potential in agri-
culture, research into their molecular genetics
is still in its infancy. What deters geneticists
who work with model systems, such as yeast,
is that these fungi contain several nuclei
within a single spore and the nuclei are proba-
bly genetically diverse12. Together with a 
complete absence of sex in all arbuscular 
mycorrhizal fungi that have been investigated,
this hinders classical genetic approaches. A
programme to sequence the entire 15-
megabase genome of G. intraradices is under

way — I hope the results will prompt more
researchers to tackle the molecular biology of
these fungi that are so essential to plant life on
our planet. ■
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COMPUTATIONAL SCIENCE

Can get satisfaction
Carla P. Gomes and Bart Selman

The sheer complexity of some computational problems means they will
probably never be solved, despite the ever-increasing resources available.
But we can sometimes predict under what conditions solutions exist.

Computer scientists have been quite success-
ful at developing fast algorithms: Google, for
example, searches its index of more than eight
billion web pages in a fraction of a second. The
indexed-search problem is said to be ‘tractable’,
or efficiently solvable; it is even possible to
guarantee that, no matter what keywords you
search on, you will get an answer quickly. Such
a worst-case efficiency guarantee is the gold
standard for algorithm design. But unfortu-
nately, such a guarantee is not always possible:
for many computational problems, we can

either prove that no efficient algorithm exists,
or we have good evidence that such an algo-
rithm is unlikely to exist. Achlioptas et al.1

(page 759 of this issue) provide a series of 
rigorous insights into a class of computational
puzzles — known as constraint-satisfaction
problems — that occur in areas as diverse as
the scheduling of airline and train crews, data-
mining, software design and computational
biology.

Constraint-satisfaction problems are de-
fined on the one hand by a set of variables

Figure 1 | Web of constraint.
The dependency graph 
of a random constraint-
satisfaction problem at a
constraint-to-variable ratio 
of 7.9 (100 binary variables
and 790 constraints). Each 
red dot represents a variable; 
a line connects two variables 
if they share a constraint. This
graph arises from a problem 
in which each constraint
connects exactly four variables
(a 4-SAT problem). This
problem is satisfiable — that
is, there is an assignment to
the variables such that all
constraints are satisfied 
— as predicted by Achlioptas
et al.1. (Figure devised by
Anand Kapur.)

(representing the unknowns of the problem),
each of which can have a finite number of 
possible values, and on the other by a set of
constraints. In constructing a schedule for a
knockout sports tournament, for example, we
can introduce a series of variables that can take
one of two values: 1, ‘true’; or 0, ‘false’. The vari-
able X might stand for ‘team A plays team B in
round 1’; if X is set to 1, this statement is true.
If we introduce a second variable, Y, represent-
ing ‘team A plays team C in round 1’, we must
then also introduce a constraint that says ‘if X
is 1, then Y should be 0’. This constraint is used
to encode the fact that team A cannot play two
different teams in the same round.

The encoding of real-world problems
requires thousands of variables with tens of
thousands of constraints. The challenge is to
find an assignment of values to the variables
such that all constraints are satisfied. With N
binary (two-valued) variables, there are 2N

possible value assignments; so if N is 1,000, we
have an enormous ‘search-space’ of 21,000 —
more than 10300 — different assignments, the
vast majority of which violates one or more
constraints. This exponentially scaling search-
space is much too large to be examined explic-
itly. Computer scientists conjecture, however,
that there is no algorithm that can do substan-
tially better than can an exhaustive search —
and an algorithm that works well for all possi-
ble sets of constraints is thus unlikely to exist2.
But how difficult is it to find an assignment of
values for a ‘typical’ set of constraints, such as
might be found in a real-world application?

Certain sets of constraints are actually sur-
prisingly easy to satisfy. In particular, if the
problem has many variables with many possi-
ble values and only a few constraints, there will
be many solutions that are relatively easy to
find. On the other hand, if the problem con-
tains few variables but a large number of con-
straints, often no assignment exists that
satisfies all the constraints. The computation-
ally interesting problems lie somewhere in the
middle. For randomly generated constraint-
satisfaction problems (Fig. 1), a sudden, sharp
‘phase transition’ occurs at a certain ratio of
constraints to variables: at this value, we pass
from a situation where almost all combinations
of constraints can be satisfied, to one where
very few combinations can be satisfied3–8. 

Achlioptas et al.1 present a new approach to
determining the lower bound on this phase
transition in the so-called k-SAT problem.
This is a constraint-satisfaction problem that
has only binary variables and a special logical
form of constraints that contain exactly k vari-
ables. It has been shown that any general con-
straint-satisfaction problem can be translated
into a k-SAT problem, for any values of k larger
than 2 (Fig. 2, overleaf). In fact, thousands of
practical computational problems — from
optical switching, supply-chain management
and chip design, to protein folding — can be
formulated as k-SAT problems.

Achlioptas and colleagues introduce a
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sophisticated probabilistic argument, the
weighted-second-moment method, to show
that values for variables that satisfy all the con-
straint clauses can be assigned with high prob-
ability up to a constraint-to-variable ratio of
2kln2�k. Their method cleverly considers the
overall statistical properties of the exponential
search-space, without actually identifying any
specific satisfying assignment. The lower lim-
its that they find for the position of the phase
transition at different values of k are very close
to the best-known upper limits, especially for
larger values of k, thus limiting significantly
the range of possible values where the phase
transition can occur. 

The authors also consider the graph-colour-
ing problem, another widely studied con-
straint-satisfaction task (Fig. 2). In this
problem, nodes of a graph are coloured such
that no two connected nodes have the same
colour. (Ensuring that, on a map, no two 
countries of the same colour border each other
is an example of this problem.) Using the 
second-moment method, Achlioptas et al. can
predict how many colours are needed to fill in
random graphs — without actually showing a
valid colouring.

Achlioptas and colleagues’ approach was
inspired in part by work that used advanced

techniques from statistical physics to obtain
insights into the k-SAT phase transition9. In
turn, physicists have used the second-moment
method to show rigorously that, as the phase-
transition region is approached, the exponential
search-space fractures dramatically, with many
small solution clusters appearing relatively far

Figure 2 | Finding satisfaction. Constraint-satisfaction problems form a large class of practical
computational problems, and encompass well-studied special cases such as the graph-colouring and 
k-SAT problems. a, An optical switch. The task is to assign a wavelength of light to each input–output
path, such that a given wavelength is not assigned more than once to any input or output port. 
b, The optical-switch problem is equivalent to assigning different colours to the cells of a square matrix
such that there is no repeated colour in any row or column (a ‘Latin square’). This problem can 
be translated into c, a graph-colouring problem or d, a k-SAT problem. Achlioptas et al.1 introduce a
technique for determining whether random k-SAT problems will have a satisfying assignment — that
is, an assignment to the variables such that all constraints are satisfied — and whether a random graph
can be coloured with a given number of colours. 

CANCER 

Inflammation by remote control
Alberto Mantovani

Smouldering beneath many latent tumours is a chronic inflammation that
goads pre-malignant cells into becoming full-blown cancer. The spark that
kindles these flames comes from an unexpected source.

Chronic inflammation makes individuals sus-
ceptible to many forms of cancer. The culprits
that drive this process are inflammatory cells
and signalling molecules of the ‘innate’
immune system — our in-born defence sys-
tem, which recognizes potential threats with-
out previous exposure to them. But in a
surprising twist, de Visser et al., writing in

Cancer Cell1, demonstrate that specialized cells
from the ‘adaptive’ immune system orchestrate
the innate inflammation that promotes
tumour progression. 

The link between inflammation and the
promotion of cancer was first observed in 
the nineteenth century2, but only in recent
years has it become a generally accepted 

apart from each other10. Traditional search pro-
cedures have trouble finding solutions in these
search-spaces because they tend to get ‘stuck’ in
between the solution clusters. 

The quest for a deeper understanding of
phase-transition phenomena in computa-
tional problems has been a catalyst to a pro-
ductive interchange of ideas and concepts
between statistical physics, mathematics and
computer science. Step-by-step, this work is
revealing the intricate structure of exponential
search-spaces. These insights can lead to the
design of new methods for searching such
spaces9, and thus to fundamentally new algo-
rithms for computational problems. An open
question is whether such techniques can be
adapted to deal with constraint-satisfaction
problems that have more inherent structure11

than the k-SAT problem, and which occur in
many real-world applications. ■
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