Name (First, and Last):

Useful formula

$$\begin{split} x &= \sqrt{\frac{\hbar}{2m\omega}} (a_+ + a_-), \quad p = i \sqrt{\frac{\hbar m \omega}{2}} (a_+ - a_-), \quad a_\pm = \sqrt{\frac{1}{2\hbar m \omega}} (\mp i p + m \omega x), \\ a_+ \psi_n &= \sqrt{n+1} \psi_{n+1}, \qquad a_- \psi_n = \sqrt{n} \psi_{n-1}, \qquad [a_-, a_+] = 1 \end{split}$$

- 1. (2pts) True or False: In the absence of external forces, electrons move along sinusoidal paths.
 - A. True
 - B. False
- 2. (2pts) Consider an electron with the potential energy $U(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x < 0 & or & x > L \end{cases}$.

Your electron is in the lowest energy state of this potential energy, with a wave function $\psi(x) = \psi_1(x)$ and a corresponding energy E_1 . Suppose you first measure the position of this electron very precisely, without destroying the electron. *After* measuring the position, you measure the *energy* of the same electron. Which of the following statements describes the result of this energy measurement?

- A. The value that you measure will be E_1 .
- B. The value that you measure could possibly be E_1 .
- C. The value that you measure will not be E_1 .
- 3. (4pts) A theorist has constructed a model Hamiltonian as

 $H = \epsilon(|1\rangle\langle 2| - |2\rangle\langle 1| + b|2\rangle\langle 2|)$, where " ϵ " is a non-zero real constant and "b" is another constant to be determined. In order to make this a valid Hamiltonian, what is the requirement for "b"?

- A. "b" should be imaginary
- B. "b" should be real
- C. "b" should be zero
- D. No choice of "b" will make this a valid Hamiltonian

Name (First, and Last):

4. Suppose that a particle starts out in a linear combination of two normalized stationary states, $\psi_0(x)$ and $\psi_1(x)$, which are the ground state and the first excited state with the corresponding eigen-energies of E_0 and E_1 , respectively:

$$\Psi(x,0) = A[2\psi_0(x) + \psi_1(x)]$$

Here, also assume that $\psi_0(x)$ and $\psi_1(x)$ are both real and that there exist infinite number of other stationary states in addition to these two states.

- (a) (2pts) Determine the normalization constant, A.
- (b) (2pts) Does $\Psi(x,0)$ satisfy the time independent Schroedinger's equation?
- (c) (4pts) Find the wave function $\Psi(x,t)$.
- (d) (2pts) Does $\Psi(x,t)$ satisfy the time dependent Schroedinger's equation?
- (e) (2pts) When you measure the energy of the system at t, what is the probability of observing energy value of $(E_0 + E_1)/2$?
- (f) (2pts) What is the expectation value of the Hamiltonian at t?
- (g) (2pts) When you measure the energy of the system at t, what is the probability of observing the energy value of E_0 ?
- (h) (2pts) Now, assume that the energy measurement yielded E_0 at a particular time (we reset our clock to time zero at this time), if you call the state immediately after this measurement, $\Omega(x,0)$, what is $\Omega(x,0)$ in terms of $\psi_0(x)$ and $\psi_1(x)$?
- 5. The harmonic oscillator is described by the Hamiltonian, $H = \frac{1}{2m} [p^2 + (m\omega x)^2]$.
 - (a) (8pts) Find $\langle p \rangle$ and $\langle p^2 \rangle$ in the *n*th state of the harmonic oscillator.
 - (b) (6pts) Starting from the ground state (n=0) eigen-function, $\psi_0(x) = Ae^{-\frac{m\omega}{2\hbar}x^2}$, where A is a normalization constant, find the normalized n=1 eigen-function ($\psi_1(x)$) by applying the ladder operator given above. You can keep the constant A in your final answer.

Name (First, and Last):

- 6. (4pts) Show whether the operator, $i\frac{d}{dx}$, is hermitian or not.
- 7. The Hamiltonian of a two-level system is given by $H = \epsilon(|1\rangle\langle 2| + |2\rangle\langle 1|)$, where ϵ is a non-zero real constant, and $|1\rangle$ and $|2\rangle$ form an orthonormal basis.
 - (a) (2pts) With $|1\rangle$ and $|2\rangle$ as the basis, find the matrix representation of H.
 - (b) (6pts) Find eigenenergies, and normalized eigenstates as linear combinations of $|1\rangle$ and $|2\rangle$.
 - (c) (8pts) If the system starts out (at t=0) in state $|1\rangle$, what is the probability of finding it in state $|1\rangle$ at a later time t?
- 8. (8 pts) Consider a particle in an infinite well shown below. Without solving the Schroedinger equation, sketch the probability density $|\psi(x)|^2$ of the eigenfunctions corresponding to the ground state (E₀) and the second excited state (E₂), and explain all the key qualitative features.

