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Table 4.2: The first few spherical harmonics, ¥}" (6. ¢).
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1. (15 pts) Consider a particle in an infinite well shown below. Without solving the Schroedinger

equation, sketch the probability density |y (x) |2 of the eigenfunctions corresponding to the ground state
(Ep) and the third excited state (E;), and explain all the key qualitative features.
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2. A particle of mass m and Kinetic energy E > 0 approaches an abrupt potential drop V,as shown below.
As you know, in this problem, the wave function cannot be normalized, but the the relative amplitudes

ik x -ik X ik x
are still meaningful. Assume\ul(x) —e!l +Be ! forx<o0and \pz(x) =Fe 2 forx> 0.
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(a) (2 pts) Express k; and k, in terms of E, V, and m.



(b) (8 pts) By applying appropriate boundary conditions atx = 0, obtain B and F in terms ofk; and k, .

(c) (10 pts) Sketch the probability density ‘\u(x)|2 ( |\|11(x)|2 forx < 0 and |\|12(x)|2 for x > 0) over the
entire region.
What are the maximum and minimum values of |\y1(x)‘2 and how do they compare with |\u2(x) ‘2’?

(d) (5 pts) Obtain the transmission coefficient T in terms of k; and k,,.

3. A particle in the harmonic oscillator potential (V = %ma)zxz)starts out in the normalized
wavefunction
1
W(x0) = ——[w(X) +w;(x) ],

V2

where y,(x)and y, (x) are the ground state and the first excited state eigenfunction, repectively.

(@) (5 points) Construct W (x, t).

(b) (10 points) Find the expectation value (x) at time t of this state.

4. Angular wavefunction of a particle is given by Y (6, ¢) = Asin(0)cos(¢) (Hint: Express it by a sum
of spherical harmonics)

(@) (8 points) Find the normalization constant A.

(b) (12 points) Evaluate the expectation values (L,) and (L?) of this state.

5. A spin-1/2 particle at rest in a uniform magnetic field pointing in the z-direction is described by the
Hamiltonian:

H=-BS,
(@) (5 points) Write down the matrix describing this Hamiltonian: our basis is the standard

m-l = (1)and m——l = (0)
"2>'0 “2>‘1'
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(b) (5 points) If, at t = 0, measurement of S, resulted in X what is the spinor y(t=0) of the state right

after the measurement?
(Do not forget to normalize.)

(c) (5 points) At a later time t (>0), what is the corresponding spinor y(t)?

(d) (10 points) Evaluate <SX> attimet.
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